
CLIPS Reference Manual

ii Table of Contents

3.1 Slot Default Values ...22
3.2 Slot Default Constraints for Pattern-Matching ...22
3.3 Slot Value Constraint Attributes ..23
3.4 Implied Deftemplates ..23

Section 4 - Deffacts Construct ..25

Section 5 - Defrule Construct..27
5.1 Defining Rules ..27
5.2 Basic Cycle Of Rule Execution ...28
5.3 Conflict Resolution Strategies ...29

5.3.1 Depth Strategy..29
5.3.2 Breadth Strategy ...29
5.3.3 Simplicity Strategy ...29
5.3.4 Complexity Strategy ...30
5.3.5 LEX Strategy..30
5.3.6 MEA Strategy...31
5.3.7 Random Strategy ..31

5.4 LHS Syntax...33
5.4.1 Pattern Conditional Element ...33

5.4.1.1 Literal Constraints..34
5.4.1.2 Wildcards Single- and Multifield..36
5.4.1.3 Variables Single- and Multifield...38
5.4.1.4 Connective Constraints ..40
5.4.1.5 Predicate Constraints..43
5.4.1.6 Return Value Constraints ...45
5.4.1.7 Pattern-Matching with Object Patterns ...46
5.4.1.8 Pattern-Addresses ..49

5.4.2 Test Conditional Element..49
5.4.3 Or Conditional Element ..51
5.4.4 And Conditional Element..52
5.4.5 Not Conditional Element ..53
5.4.6 Exists Conditional Element...54
5.4.7 Forall Conditional Element ...56
5.4.8 Logical Conditional Element ..58
5.4.9 Automatic Addition and Reordering of LHS CEs..61

5.4.9.1 Rules Without Any LHS Pattern CEs ...61
5.4.9.2 Test and Not CEs as the First CE of an And CE ...61
5.4.9.3 Test CEs Following Not CEs..62
5.4.9.4 Or CEs Following Not CEs ..63
5.4.9.5 Notes About Pattern Addition and Reordering..63

5.4.10 Declaring Rule Properties ...63
5.4.10.1 The Salience Rule Property ..64

Preview from Notesale.co.uk

Page 4 of 428

CLIPS Reference Manual

iv Table of Contents

9.4 Defmessage-handler Construct .. 103
9.4.1 Message-handler Parameters... 105

9.4.1.1 Active Instance Parameter.. 105
9.4.2 Message-handler Actions .. 106
9.4.3 Daemons... 108
9.4.4 Predefined System Message-handlers ... 108

9.4.4.1 Instance Initialization ... 108
9.4.4.2 Instance Deletion ... 109
9.4.4.3 Instance Display... 110
9.4.4.4 Directly Modifying an Instance .. 110
9.4.4.5 Modifying an Instance using Messages .. 111
9.4.4.6 Directly Duplicating an Instance .. 111
9.4.4.7 Duplicating an Instance using Messages... 112
9.4.4.8 Instance Creation ... 112

9.5 Message Dispatch.. 112
9.5.1 Applicability of Message-handlers .. 113
9.5.2 Message-handler Precedence .. 113
9.5.3 Shadowed Message-handlers .. 114
9.5.4 Message Execution Errors... 114
9.5.5 Message Return Value .. 115

9.6 Manipulating Instances.. 115
9.6.1 Creating Instances... 115

9.6.1.1 Definstances Construct... 117
9.6.2 Reinitializing Existing Instances ... 118
9.6.3 Reading Slots.. 120
9.6.4 Setting Slots.. 120
9.6.5 Deleting Instances... 121
9.6.6 Delayed Pattern-Matching When Manipulating Instances 121
9.6.7 Modifying Instances ... 122

9.6.7.1 Directly Modifying an Instance with Delayed Pattern-Matching................. 122
9.6.7.2 Directly Modifying an Instance with Immediate Pattern-Matching 123
9.6.7.3 Modifying an Instance using Messages with Delayed Pattern-Matching..... 123
9.6.7.4 Modifying an Instance using Messages with Immediate Pattern-Matching . 124

9.6.8 Duplicating Instances.. 124
9.6.8.1 Directly Duplicating an Instance with Delayed Pattern-Matching............... 124
9.6.8.2 Directly Duplicating an Instance with Immediate Pattern-Matching 125
9.6.8.3 Duplicating an Instance using Messages with Delayed Pattern-Matching ... 125
9.6.8.4 Duplicating an Instance using Messages with Immediate Pattern-Matching 126

9.7 Instance-set Queries and Distributed Actions... 127
9.7.1 Instance-set Definition.. 128
9.7.2 Instance-set Determination.. 129
9.7.3 Query Definition... 130
9.7.4 Distributed Action Definition.. 131

Preview from Notesale.co.uk

Page 6 of 428

 CLIPS Reference Manual

CLIPS Basic Programming Guide v

9.7.5 Scope in Instance-set Query Functions.. 132
9.7.6 Errors during Instance-set Query Functions .. 132
9.7.7 Halting and Returning Values from Query Functions.. 133
9.7.8 Instance-set Query Functions .. 133

9.7.8.1 Testing if Any Instance-set Satisfies a Query ... 133
9.7.8.2 Determining the First Instance-set Satisfying a Query 133
9.7.8.3 Determining All Instance-sets Satisfying a Query....................................... 134
9.7.8.4 Executing an Action for the First Instance-set Satisfying a Query............... 134
9.7.8.5 Executing an Action for All Instance-sets Satisfying a Query..................... 135
9.7.8.6 Executing a Delayed Action for All Instance-sets Satisfying a Query 135

Section 10 - Defmodule Construct .. 137
10.1 Defining Modules.. 137
10.2 Specifying a Construct’s Module... 138
10.3 Specifying Modules... 139
10.4 Importing and Exporting Constructs .. 139

10.4.1 Exporting Constructs .. 140
10.4.2 Importing Constructs .. 141

10.5 Importing and Exporting Facts and Instances... 141
10.5.1 Specifying Instance-Names... 142

10.6 Modules and Rule Execution ... 142

Section 11 - Constraint Attributes.. 145
11.1 Type Attribute ... 145
11.2 Allowed Constant Attributes.. 146
11.3 Range Attribute ... 147
11.4 Cardinality Attribute.. 147
11.5 Deriving a Default Value From Constraints ... 148
11.6 Constraint Violation Examples .. 149

Section 12 - Actions And Functions.. 151
12.1 Predicate Functions ... 151

12.1.1 Testing For Numbers .. 151
12.1.2 Testing For Floats... 151
12.1.3 Testing For Integers .. 151
12.1.4 Testing For Strings Or Symbols .. 152
12.1.5 Testing For Strings ... 152
12.1.6 Testing For Symbols... 152
12.1.7 Testing For Even Numbers ... 152
12.1.8 Testing For Odd Numbers... 152
12.1.9 Testing For Multifield Values ... 153
12.1.10 Testing For External-Addresses .. 153
12.1.11 Comparing for Equality... 153

Preview from Notesale.co.uk

Page 7 of 428

CLIPS Reference Manual

4 Section 2 - CLIPS Overview

CLIPS> (defglobal ?*x* = 3)
CLIPS> ?*x*
3
CLIPS> red
red
CLIPS> (bind ?a 5)
5
CLIPS> (+ ?a 3)
8
CLIPS> (reset)
CLIPS> ?a
[EVALUATN1] Variable a is unbound
FALSE
CLIPS>

The previous example first called the addition function adding the numbers 3 and 4 to yield the
result 7. A global variable ?*x* was then defined and given the value 3. The variable ?*x* was
then entered at the prompt and its value of 3 was returned. Finally the constant symbol red was
entered and was returned (since a constant evaluates to itself).

2.1.2 Automated Command Entry and Loading

Some operating systems allow additional arguments to be specified to a program when it begins
execution. When the CLIPS executable is started under such an operating system, CLIPS can be
made to automatically execute a series of commands read directly from a file or to load
constructs from a file. The command-line syntax for starting CLIPS and automatically reading
commands or loading constructs from a file is as follows:

Syntax
clips <option>*

<option> ::= -f <filename> |
 -f2 <filename> |
 -l <filename>

For the -f option, <filename> is a file that contains CLIPS commands. If the exit command is
included in the file, CLIPS will halt and the user is returned to the operating system after
executing the commands in the file. If an exit command is not in the file, CLIPS will enter in its
interactive state after executing the commands in the file. Commands in the file should be
entered exactly as they would be interactively (i.e. opening and closing parentheses must be
included and a carriage return must be at the end of the command). The -f command line option
is equivalent to interactively entering a batch command as the first command to the CLIPS
prompt.

The -f2 option is similar to the -f option, but is equivalent to interactively entering a batch*
command. The commands stored in <filename> are immediately executed, but the commands
and their return values are not displayed as they would be for a batch command.

Preview from Notesale.co.uk

Page 30 of 428

CLIPS Reference Manual

6 Section 2 - CLIPS Overview

<lexeme> ::= <symbol> | <string>

A complete BNF listing for CLIPS constructs along with some commonly used replacements for
non-terminal symbols are listed in appendix I.

2.3 BASIC PROGRAMMING ELEMENTS

CLIPS provides three basic elements for writing programs: primitive data types, functions for
manipulating data, and constructs for adding to a knowledge base.

2.3.1 Data Types

CLIPS provides eight primitive data types for representing information. These types are float,
integer, symbol, string, external-address, fact-address, instance-name and instance-address.
Numeric information can be represented using floats and integers. Symbolic information can be
represented using symbols and strings.

A number consists only of digits (0-9), a decimal point (.), a sign (+ or -), and, optionally, an (e)
for exponential notation with its corresponding sign. A number is either stored as a float or an
integer. Any number consisting of an optional sign followed by only digits is stored as an
integer (represented internally by CLIPS as a C long integer). All other numbers are stored as
floats (represented internally by CLIPS as a C double-precision float). The number of significant
digits will depend on the machine implementation. Roundoff errors also may occur, again
depending on the machine implementation. As with any computer language, care should be taken
when comparing floating-point values to each other or comparing integers to floating-point
values. Some examples of integers are

237 15 +12 -32

Some examples of floats are

237e3 15.09 +12.0 -32.3e-7

Specifically, integers use the following format:

<integer> ::= [+ | -] <digit>+

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Floating point numbers use the following format:

<float> ::= <integer> <exponent> |

 <integer> . [exponent]

Preview from Notesale.co.uk

Page 32 of 428

 CLIPS Reference Manual

CLIPS Basic Programming Guide 7

 . <unsigned integer> [exponent]

 <integer> . <unsigned integer> [exponent]

<unsigned-integer> ::= <digit>+

<exponent> ::= e | E <integer>

A sequence of characters which does not exactly follow the format of a number is treated as a
symbol (see the next paragraph).

A symbol in CLIPS is any sequence of characters that starts with any printable ASCII character
and is followed by zero or more printable ASCII characters. When a delimiter is found, the
symbol is ended. The following characters act as delimiters: any non-printable ASCII character
(including spaces, tabs, carriage returns, and line feeds), a double quote, opening and closing
parentheses “(” and “)”, an ampersand “&”, a vertical bar “|”, a less than “<”, and a tilde “~”. A
semicolon “;” starts a CLIPS comment (see section 2.3.3) and also acts as a delimiter. Delimiters
may not be included in symbols with the exception of the “<“ character which may be the first
character in a symbol. In addition, a symbol may not begin with either the “?” character or the
“$?” sequence of characters (although a symbol may contain these characters). These characters
are reserved for variables (which are discussed later in this section). CLIPS is case sensitive (i.e.
uppercase letters will match only uppercase letters). Note that numbers are a special case of
symbols (i.e. they satisfy the definition of a symbol, but they are treated as a different data type).
Some simple examples of symbols are

foo Hello B76-HI bad_value

127A 456-93-039 @+=-% 2each

A string is a set of characters that starts with a double quote (") and is followed by zero or more
printable characters. A string ends with double quotes. Double quotes may be embedded within a
string by placing a backslash (\) in front of the character. A backslash may be embedded by
placing two consecutive backslash characters in the string. Some examples are

"foo" "a and b" "1 number" "a\"quote"

Note that the string “abcd" is not the same as the symbol abcd. They both contain the same
characters, but are of different types. The same holds true for the instance name [abcd].

An external-address is the address of an external data structure returned by a function (written
in a language such as C or Ada) that has been integrated with CLIPS. This data type can only be
created by calling a function (i.e. it is not possible to specify an external-address by typing the
value). In the basic version of CLIPS (which has no user defined external functions), it is not
possible to create this data type. External-addresses are discussed in further detail in the

Preview from Notesale.co.uk

Page 33 of 428

CLIPS Reference Manual

10 Section 2 - CLIPS Overview

Function calls in CLIPS use a prefix notation – the arguments to a function always appear after
the function name. Function calls begin with a left parenthesis, followed by the name of the
function, then the arguments to the function follow (each argument separated by one or more
spaces). Arguments to a function can be primitive data types, variables, or another function call.
The function call is then closed with a right parenthesis. Some examples of function calls using
the addition (+) and multiplication (*) functions are shown following.

(+ 3 4 5)
(* 5 6.0 2)
(+ 3 (* 8 9) 4)
(* 8 (+ 3 (* 2 3 4) 9) (* 3 4))

While a function refers to a piece of executable code identified by a specific name, an
expression refers to a function which has its arguments specified (which may or may not be
functions calls as well). Thus the previous examples are expressions which make calls to the *
and + functions.

2.3.3 Constructs

Several defining constructs appear in CLIPS: defmodule, defrule, deffacts, deftemplate,
defglobal, deffunction, defclass, definstances, defmessage-handler, defgeneric, and
defmethod. All constructs in CLIPS are surrounded by parentheses. The construct opens with a
left parenthesis and closes with a right parenthesis. Defining a construct differs from calling a
function primarily in effect. Typically a function call leaves the CLIPS environment unchanged
(with some notable exceptions such as resetting or clearing the environment or opening a file).
Defining a construct, however, is explicitly intended to alter the CLIPS environment by adding
to the CLIPS knowledge base. Unlike function calls, constructs never have a return value.

As with any programming language, it is highly beneficial to comment CLIPS code. All
constructs (with the exception of defglobal) allow a comment directly following the construct
name. Comments also can be placed within CLIPS code by using a semicolon (;). Everything
from the semicolon until the next return character will be ignored by CLIPS. If the semicolon is
the first character in the line, the entire line will be treated as a comment. Examples of
commented code will be provided throughout the reference manual. Semicolon commented text
is not saved by CLIPS when loading constructs (however, the optional comment string within a
construct is saved).

2.4 DATA ABSTRACTION

There are three primary formats for representing information in CLIPS: facts, objects and global
variables.

Preview from Notesale.co.uk

Page 36 of 428

CLIPS Reference Manual

16 Section 2 - CLIPS Overview

statement. In contrast, rules act like WHENEVER-THEN statements. The inference engine
always keeps track of rules which have their conditions satisfied and thus rules can immediately
be executed when they are applicable. In this sense, rules are similar to exception handlers found
in languages such as Ada.

2.5.2 Procedural Knowledge

CLIPS also supports a procedural paradigm for representing knowledge like that of more
conventional languages, such as Pascal and C. Deffunctions and generic functions allow the user
to define new executable elements to CLIPS that perform a useful side-effect or return a useful
value. These new functions can be called just like the built-in functions of CLIPS.
Message-handlers allow the user to define the behavior of objects by specifying their response to
messages. Deffunctions, generic functions and message-handlers are all procedural pieces of
code specified by the user that CLIPS executes interpretively at the appropriate times.
Defmodules allow a knowledge base to be partitioned.

2.5.2.1 Deffunctions

Deffunctions allow you to define new functions in CLIPS directly. In previous versions of
CLIPS, the only way to have user-defined functions was to write them in some external
language, such as C or Ada, and then recompile and relink CLIPS with the new functions. The
body of a deffunction is a series of expressions similar to the RHS of a rule that are executed in
order by CLIPS when the deffunction is called. The return value of a deffunction is the value of
the last expression evaluated within the deffunction. Calling a deffunction is identical to calling
any other function in CLIPS. Deffunctions are covered comprehensively in Section 7.

2.5.2.2 Generic Functions

Generic functions are similar to deffunctions in that they can be used to define new procedural
code directly in CLIPS, and they can be called like any other function. However, generic
functions are much more powerful because they can be overloaded. A generic function will do
different things depending on the types (or classes) and number of its arguments. Generic
functions are comprised of multiple components called methods, where each method handles
different cases of arguments for the generic function. For example, you might overload the “+”
operator to do string concatenation when it is passed strings as arguments. However, the “+”
operator will still perform arithmetic addition when passed numbers. There are two methods in
this example: an explicit one for strings defined by the user and an implicit one which is the
standard CLIPS arithmetic addition operator. The return value of a generic function is the
evaluation of the last expression in the method executed. Generic functions are covered
comprehensively in Section 8.

Preview from Notesale.co.uk

Page 42 of 428

CLIPS Reference Manual

18 Section 2 - CLIPS Overview

numbers as arguments, or you can define message-handlers for the NUMBER class which allow
you to do it in the purely OOP fashion.

All programming elements which are not objects must be manipulated in a non-OOP utilizing
function tailored for those programming elements. For example, to print a rule, you call the
function ppdefrule; you do not send a message “print” to a rule, since it is not an object.

2.6.2 Primary OOP Features

There are five primary characteristics that an OOP system must possess: abstraction,
encapsulation, inheritance, polymorphism and dynamic binding. An abstraction is a higher
level, more intuitive representation for a complex concept. Encapsulation is the process whereby
the implementation details of an object are masked by a well-defined external interface. Classes
may be described in terms of other classes by use of inheritance. Polymorphism is the ability of
different objects to respond to the same message in a specialized manner. Dynamic binding is the
ability to defer the selection of which specific message-handlers will be called for a message
until run-time.

The definitions of new classes allows the abstraction of new data types in COOL. The slots and
message-handlers of these classes describe the properties and behavior of a new group of objects.

COOL supports encapsulation by requiring message-passing for the manipulation of instances of
user-defined classes. An instance cannot respond to a message for which it does not have a
defined message-handler.

COOL allows the user to specify some or all of the properties and behavior of a class in terms of
one or more unrelated superclasses. This process is called multiple inheritance. COOL uses the
existing hierarchy of classes to establish a linear ordering called the class precedence list for a
new class. Objects which are instances of this new class can inherit properties (slots) and
behavior (message-handlers) from each of the classes in the class precedence list. The word
precedence implies that properties and behavior of a class first in the list override conflicting
definitions of a class later in the list.

One COOL object can respond to a message in a completely different way than another object;
this is polymorphism. This is accomplished by attaching message-handlers with differing actions
but which have the same name to the classes of these two objects respectively.

Dynamic binding is supported in that an object reference (see section 2.3.1) in a send function
call is not bound until run-time. For example, an instance-name or variable might refer to one
object at the time a message is sent and another at a later time.

Preview from Notesale.co.uk

Page 44 of 428

 CLIPS Reference Manual

CLIPS Basic Programming Guide 33

conflict resolution strategies). The lex and mea strategies are provided to help in converting
OPS5 programs to CLIPS.

The random strategy is useful for testing. Because this strategy randomly orders activations
having the same salience, it is useful in detecting whether the execution order of rules with the
same salience effects the program behavior. Before running a program with the random strategy,
first seed the random number generator using the seed function. The same seed value can be
subsequently be used if it is necessary to replicate the results of the program run.

5.4 LHS SYNTAX

This section describes the syntax used on the LHS of a rule. The LHS of a CLIPS rule is made
up of a series of conditional elements (CEs) that must be satisfied for the rule to be placed on the
agenda. There are eight types of conditional elements: pattern CEs, test CEs, and CEs, or CEs,
not CEs, exists CEs, forall CEs, and logical CEs. The pattern CE is the most basic and
commonly used conditional element. Pattern CEs contain constraints which are used to
determine if any pattern entities (facts or instances) satisfy the pattern. The test CE is used to
evaluate expressions as part of the pattern-matching process. The and CE is used to specify that
an entire group of CEs must all be satisfied. The or CE is used to specify that only one of a
group of CEs must be satisfied. The not CE is used to specify that a CE must not be satisfied.
The exists CE is used to test for the occurence of at least one partial match for a set of CEs. The
forall CE is used to test that a set of CEs is satisfied for every partial match of a specified CE.
Finally, the logical CE allows assertions of facts and the creation of instances on the RHS of a
rule to be logically dependent upon pattern entities matching patterns on the LHS of a rule (truth
maintenance).

Syntax

<conditional-element> ::= <pattern-CE> |
 <assigned-pattern-CE> |
 <not-CE> |
 <and-CE> |
 <or-CE> |
 <logical-CE> |
 <test-CE> |
 <exists-CE> |
 <forall-CE>

5.4.1 Pattern Conditional Element

Pattern conditional elements consist of a collection of field constraints, wildcards, and
variables which are used to constrain the set of facts or instances which match the pattern CE. A
pattern CE is satisfied by each and every pattern entity that satisfies its constraints. Field
constraints are a set of constraints that are used to test a single field or slot of a pattern entity. A
field constraint may consist of only a single literal constraint, however, it may also consist of

Preview from Notesale.co.uk

Page 59 of 428

CLIPS Reference Manual

52 Section 5 - Defrule Construct

 =>
 (printout t "The system has a fault." crlf))

(defrule system-fault
 (error-status unknown)
 (valve broken)
 =>
 (printout t "The system has a fault." crlf))

(defrule system-fault
 (error-status unknown)
 (temp high)
 =>
 (printout t "The system has a fault." crlf))

5.4.4 And Conditional Element

CLIPS assumes that all rules have an implicit and conditional element surrounding the
conditional elements on the LHS. This means that all conditional elements on the LHS must be
satisfied before the rule can be activated. An explicit and conditional element is provided to
allow the mixing of and CEs and or CEs. This allows other types of conditional elements to be
grouped together within or and not CEs. The and CE is satisfied if all of the CEs inside of the
explicit and CE are satisfied. If all other LHS conditions are true, the rule will be activated. Any
number of conditional elements may be placed within an and CE.

Syntax
<and-CE> ::= (and <conditional-element>+)

Example
(defrule system-flow
 (error-status confirmed)
 (or (and (temp high)
 (valve closed))
 (and (temp low)
 (valve open)))
 =>
 (printout t "The system is having a flow problem." crlf))

An and CE that has a test or not CE as its first CE has the pattern (initial-fact) or (initial-object)
added as the first CE. Note that the LHS of any rule is enclosed within an implied and CE. For
example, the following rule

(defrule nothing-to-schedule
 (not (schedule ?))
 =>
 (printout t "Nothing to schedule." crlf))

is converted to

(defrule nothing-to-schedule

Preview from Notesale.co.uk

Page 78 of 428

 CLIPS Reference Manual

CLIPS Basic Programming Guide 53

 (and (initial-fact)
 (not (schedule ?)))
 =>
 (printout t "Nothing to schedule." crlf))

5.4.5 Not Conditional Element

Sometimes the lack of information is meaningful; i.e., one wishes to fire a rule if a pattern entity
or other CE does not exist. The not conditional element provides this capability. The not CE is
satisfied only if the conditional element contained within it is not satisfied. As with other
conditional elements, any number of additional CEs may be on the LHS of the rule and field con-
straints may be used within the negated pattern.

Syntax
<not-CE> ::= (not <conditional-element>)

Only one CE may be negated at a time. Multiple patterns may be negated by using multiple not
CEs. Care must be taken when combining not CEs with or and and CEs; the results are not
always obvious! The same holds true for variable bindings within a not CE. Previously bound
variables may be used freely inside of a not CE. However, variables bound for the first time
within a not CE can be used only in that pattern.

Examples
(defrule high-flow-rate
 (temp high)
 (valve open)
 (not (error-status confirmed))
 =>
 (printout t "Recommend closing of valve due to high temp"
 crlf))

 (defrule check-valve
 (check-status ?valve)
 (not (valve-broken ?valve))
 =>
 (printout t "Device " ?valve " is OK" crlf))

(defrule double-pattern
 (data red)
 (not (data red ?x ?x))
 =>
 (printout t "No patterns with red green green!" crlf))

A not CE that contains a single test CE is converted such that the test CE is contained within an
and CE and is preceded by the (initial-fact) or (initial-object) pattern. For example, the following
conditional element

(not (test (> ?time-1 ?time-2)))

Preview from Notesale.co.uk

Page 79 of 428

CLIPS Reference Manual

58 Section 5 - Defrule Construct

5.4.8 Logical Conditional Element

The logical conditional element provides a truth maintenance capability for pattern entities
(facts or instances) created by rules which use the logical CE. A pattern entity created on the
RHS (or as a result of actions performed from the RHS) can be made logically dependent upon
the pattern entities which matched the patterns enclosed with the logical CE on the LHS of the
rule. The pattern entities matching the LHS logical patterns provide logical support to the facts
and instance created by the RHS of the rule. A pattern entity can be logically supported by more
than one group of pattern entities from the same or different rules. If any one supporting pattern
entities is removed from a group of supporting pattern entities (and there are no other supporting
groups), then the pattern entity is removed.

If a pattern entity is created without logical support (e.g., from a deffacts, definstaces, as a
top-level command, or from a rule without any logical patterns), then the pattern entity has
unconditional support. Unconditionally supporting a pattern entity removes all logical support
(without causing the removal of the pattern entity). In addition, further logical support for an
unconditionally supported pattern entity is ignored. Removing a rule that generated logical
support for a pattern entity, removes the logical support generated by that rule (but does not
cause the removal of the pattern entity if no logical support remains).

Syntax
<logical-CE> ::= (logical <conditional-element>+)

The logical CE groups patterns together exactly as the explicit and CE does. It may be used in
conjunction with the and, or, and not CEs. However, only the first N patterns of a rule can have
the logical CE applied to them. For example, the following rule is legal

(defrule ok
 (logical (a))
 (logical (b))
 (c)
 =>
 (assert (d)))

whereas the following rules are illegal

(defrule not-ok-1
 (logical (a))
 (b)
 (logical (c))
 =>
 (assert (d)))

(defrule not-ok-2
 (a)
 (logical (b))
 (logical (c))
 =>

Preview from Notesale.co.uk

Page 84 of 428

 CLIPS Reference Manual

CLIPS Basic Programming Guide 59

 (assert (d)))

(defrule not-ok-3
 (or (a)
 (logical (b)))
 (logical (c))
 =>
 (assert (d)))

Example
Given the following rules,

CLIPS> (clear)
CLIPS>
(defrule rule1
 (logical (a))
 (logical (b))
 (c)
 =>
 (assert (g) (h)))
CLIPS>
(defrule rule2
 (logical (d))
 (logical (e))
 (f)
 =>
 (assert (g) (h)))
CLIPS>

the following commands illustrate how logical dependencies work.

CLIPS> (watch facts)
CLIPS> (watch activations)
CLIPS. (watch rules)
CLIPS> (assert (a) (b) (c) (d) (e) (f))
==> f-0 (a)
==> f-1 (b)
==> f-2 (c)
==> Activation 0 rule1: f-0,f-1,f-2
==> f-3 (d)
==> f-4 (e)
==> f-5 (f)
==> Activation 0 rule2: f-3,f-3,f-5
<Fact-5>
CLIPS> (run)
FIRE 1 rule2: f-3,f-4,f-5 ; 1st rule adds logical support
==> f-6 (g)
==> f-7 (h)
FIRE 2 rule1: f-0,f-1,f-2 ; 2nd rule adds further support
CLIPS> (retract 1)
<== f-0 (a) ; Removes 1st support for (g) and (h)
CLIPS> (assert (h)) ; (h) is unconditionally supported
FALSE
CLIPS> (retract 3)
<== f-3 (d) ; Removes 2nd support for (g)

Preview from Notesale.co.uk

Page 85 of 428

CLIPS Reference Manual

62 Section 5 - Defrule Construct

 (test (> 80 (startup-value)))
 (object (is-a MACHINE))
 =>)

(defrule example-4
 (machine ?x)
 (not (and (not (part ?x ?y))
 (inventoried ?x)))
 =>)

would be changed as follows.

(defrule example-2
 (initial-fact)
 (test (> 80 (startup-value)))
 =>)

(defrule example-3
 (object (is-a INITIAL-OBJECT) (name [initial-object]))
 (test (> 80 (startup-value)))
 (object (is-a MACHINE))
 =>)

(defrule example-4
 (machine ?x)
 (not (and (initial-fact)
 (not (part ?x ?y))
 (inventoried ?x)))
 =>)

5.4.9.3 Test CEs Following Not CEs

Test CEs that immediately follow a not CE are automatically moved by CLIPS behind the first
pattern CE that precedes the not CE. For example, the following rule

(defrule example
 (a ?x)
 (not (b ?x))
 (test (> ?x 5))
 =>)

would be changed as follows.

(defrule example
 (a ?x)
 (test (> ?x 5))
 (not (b ?x))
 =>)

Preview from Notesale.co.uk

Page 88 of 428

 CLIPS Reference Manual

CLIPS Basic Programming Guide 67

Section 6 - Defglobal Construct

With the defglobal construct, global variables can be defined, set, and accessed within the
CLIPS environment. Global variables can be accessed as part of the pattern-matching process,
but changing them does not invoke the pattern-matching process. The bind function is used to
set the value of global variables. Global variables are reset to their original value when the reset
command is performed or when bind is called for the global with no values. This behavior can
be changed using the set-reset-globals function. Global variables can be removed by using the
clear command or the undefglobal command. If the globals item is being watched (see section
13.2), then an informational message will be displayed each time the value of a global variable is
changed.

Syntax
(defglobal [<defmodule-name>] <global-assignment>*)

<global-assignment> ::= <global-variable> = <expression>

<global-variable> ::= ?*<symbol>*

There may be multiple defglobal constructs and any number of global variables may be defined
in each defglobal statement. The optional <defmodule-name> indicates the module in which the
defglobals will be defined. If none is specified, the globals will be placed in the current module.
If a variable was defined in a previous defglobal construct, its value will be replaced by the value
found in the new defglobal construct. If an error is encountered when defining a defglobal
construct, any global variable definitions that occurred before the error was encountered will still
remain in effect.

Commands that operate on defglobals such as ppdefglobal and undefglobal expect the symbolic
name of the global without the astericks (e.g. use the symbol max when you want to refer to the
global variable ?*max*).

Global variables may be used anyplace that a local variable could be used (with two exceptions).
Global variables may not be used as a parameter variable for a deffunction, defmethod, or
message-handler. Global variables may not be used in the same way that a local variable is used
on the LHS of a rule to bind a value. Therefore, the following rule is illegal

(defrule example
 (fact ?*x*)
 =>)

The following rule, however, is legal.

(defrule example
 (fact ?y&:(> ?y ?*x*))
 =>)

Preview from Notesale.co.uk

Page 93 of 428

CLIPS Reference Manual

70 Section 6 - Defglobal Construct

(defrule collect-factoids
 (collect-factoids)
 =>
 (bind ?data (create$))
 (do-for-all-facts ((?f factoid)) TRUE
 (bind ?data (create$?data ?f:implied)))
 (assert (collection ?data)))

With this approach, the collection fact is available for pattern-matching with the added benefit
that there are no intermediate results generated in creating the fact. Typically if other rules are
waiting for the finished result of the collection, they would need to have lower salience so that
they aren’t fired for the intermediate results:

(defrule print-factoids
 (declare (salience -10))
 (collection $?data)
 =>
 (printout t "The collected data is " ?data crlf))

If the factoid facts are collected by a single rule firing, then the salience declaration is
unnecessary.

Appropriate Uses
The primary use of global variables (in conjunction with rules) is in making a program easier to
maintain. It is a rare situation where a global variable is required in order to solve a problem.
One appropriate use of global variables is defining salience values shared among multiple rules:

(defglobal ?*high-priority* = 100)

(defrule rule-1
 (declare (salience ?*high-priority*))
 =>)

(defrule rule-2
 (declare (salience ?*high-priority*))
 =>)

Another use is defining constants used on the LHS or RHS of a rule:

(defglobal ?*week-days* =
 (create$ monday tuesday wednesday thursday friday saturday sunday))

(defrule invalid-day
 (day ?day&:(not (member$?day ?*week-days*)))
 =>
 (printout t ?day " is invalid" crlf))

(defrule valid-day
 (day ?day&:(member$?day ?*week-days*))
 =>
 (printout t ?day " is valid" crlf))

Preview from Notesale.co.uk

Page 96 of 428

 CLIPS Reference Manual

CLIPS Basic Programming Guide 71

A third use is passing information to a rule when it is desirable not to trigger pattern-matching. In
the following rule, a global variable is used to determine whether additional debugging
information is printed:

(defglobal ?*debug-print* = nil)

(defrule rule-debug
 ?f <- (info ?info)
 =>
 (retract ?f)
 (printout ?*debug-print* "Retracting info " ?info crlf))

If ?*debug-print* is set to nil, then the printout statement will not display any information. If the
?*debug-print* is set to t, then debugging information will be sent to the screen. Because
?*debug-print* is a global, it can be changed interactively without causing rules to be
reactivated. This is useful when stepping through a program because it allows the level of
information displayed to be changed without effecting the normal flow of the program.

It’s possible, but a little more verbose, to achieve this same functionality using instances rather
than global variables:

(defclass DEBUG-INFO
 (is-a USER)
 (slot debug-print))

(definstances debug
 ([debug-info] of DEBUG-INFO (debug-print nil)))

(defrule rule-debug
 ?f <- (info ?info)
 =>
 (retract ?f)
 (printout (send [debug-info] get-debug-print) "Retracting info " ?info crlf))

Unlike fact slots, changes to a slot of an instance won’t trigger pattern matching in a rule unless
the slot is specified on the LHS of that rule, thus you have explicit control over whether an
instance slot triggers pattern-matching. The following rule won’t be retriggered if a change is
made to the debug-print slot:

(defrule rule-debug
 ?f <- (info ?info)
 (object (is-a DEBUG-INFO) (name ?name))
 =>
 (retract ?f)
 (printout (send ?name get-debug-print) "Retracting info " ?info crlf))

This is a generally applicable technique and can be used in many situations to prevent rules from
inadvertently looping when slot values are changed.

Preview from Notesale.co.uk

Page 97 of 428

 CLIPS Reference Manual

CLIPS Basic Programming Guide 89

<slot> ::= (slot <name> <facet>*) |
 (single-slot <name> <facet>*) |
 (multislot <name> <facet>*)

<facet> ::= <default-facet> | <storage-facet> |
 <access-facet> | <propagation-facet> |
 <source-facet> | <pattern-match-facet> |
 <visibility-facet> | <create-accessor-facet>
 <override-message-facet> | <constraint-attributes>

<default-facet> ::=
 (default ?DERIVE | ?NONE | <expression>*) |
 (default-dynamic <expression>*)

<storage-facet> ::= (storage local | shared)

<access-facet>
 ::= (access read-write | read-only | initialize-only)

<propagation-facet> ::= (propagation inherit | no-inherit)

<source-facet> ::= (source exclusive | composite)

<pattern-match-facet>
 ::= (pattern-match reactive | non-reactive)

<visibility-facet> ::= (visibility private | public)

<create-accessor-facet>
 ::= (create-accessor ?NONE | read | write | read-write)

<override-message-facet>
 ::= (override-message ?DEFAULT | <message-name>)

<handler-documentation>
 ::= (message-handler <name> [<handler-type>])

<handler-type> ::= primary | around | before | after

Redefining an existing class deletes the current subclasses and all associated message-handlers.
An error will occur if instances of the class or any of its subclasses exist.

9.3.1 Multiple Inheritance

If one class inherits from another class, the first class is a subclass of the second class, and the
second class is a superclass of the first class. Every user-defined class must have at least one
direct superclass, i.e. at least one class must appear in the is-a portion of the defclass. Multiple
inheritance occurs when a class has more than one direct superclass. COOL examines the direct
superclass list for a new class to establish a linear ordering called the class precedence list. The
new class inherits slots and message-handlers from each of the classes in the class precedence
list. The word precedence implies that slots and message-handlers of a class in the list override

Preview from Notesale.co.uk

Page 115 of 428

 CLIPS Reference Manual

CLIPS Basic Programming Guide 91

Class D directly inherits information from the classes B and A. The class precedence list for D is:
D B A USER OBJECT.

Example 5
(defclass E (is-a A C))

By rule #2, A must precede C. However, C is a subclass of A and cannot succeed A in a
precedence list without violating rule #1. Thus, this is an error.

Example 6
(defclass E (is-a C A))

Specifying that E inherits from A is extraneous, since C inherits from A. However, this definition
does not violate any rules and is acceptable. The class precedence list for E is: E C A B USER
OBJECT.

Example 7
(defclass F (is-a C B))

Specifying that F inherits from B is extraneous, since C inherits from B. The class precedence
list for F is: F C A B USER OBJECT. The superclass list says B must follow C in F’s class
precedence list but not that B must immediately follow C.

Example 8
(defclass G (is-a C D))

This is an error, for it violates rule #2. The class precedence of C says that A should precede B,
but the class precedence list of D says the opposite.

Example 9
(defclass H (is-a A))
(defclass I (is-a B))
(defclass J (is-a H I A B))

The respective class precedence lists of H and I are: H A USER OBJECT and I B USER
OBJECT. If J did not have A and B as direct superclasses, J could have one of three possible
class precedence lists: J H A I B USER OBJECT, J H I A B USER OBJECT or J H I B A USER
OBJECT. COOL would normally pick the first list since it preserves the family trees (H A and I
B) to the greatest extent possible. However, since J inherits directly from A and B, rule #2
dictates that the class precedence list must be J H I A B USER OBJECT.

Usage Note

For most practical applications of multiple inheritance, the order in which the superclasses are
specified should not matter. If you create a class using multiple inheritance and the order of the

Preview from Notesale.co.uk

Page 117 of 428

CLIPS Reference Manual

96 Section 9 - CLIPS Object Oriented Language (COOL)

and read. The read-only facet says the slot can only be read; the only way to set this slot is with
default facets in the class definition. The initialize-only facet is like read-only except that the
slot can also be set by slot overrides in a make-instance call (see section 9.6.1) and init
message-handlers (see section 9.4). These privileges apply to indirect access via messages as
well as direct access within message-handler bodies (see section 9.4). Note: a read-only slot that
has a static default value will implicitly have the shared storage facet.

Example
CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)
 (role concrete)
 (slot foo (create-accessor write)
 (access read-write))
 (slot bar (access read-only)
 (default abc))
 (slot woz (create-accessor write)
 (access initialize-only)))
CLIPS>
(defmessage-handler A put-bar (?value)
 (dynamic-put (sym-cat bar) ?value))
CLIPS> (make-instance a of A (bar 34))
[MSGFUN3] bar slot in [a] of A: write access denied.
[PRCCODE4] Execution halted during the actions of message-handler put-bar primary
in class A
FALSE
CLIPS> (make-instance a of A (foo 34) (woz 65))
[a]
CLIPS> (send [a] put-bar 1)
[MSGFUN3] bar slot in [a] of A: write access denied.
[PRCCODE4] Execution halted during the actions of message-handler put-bar primary
in class A
FALSE
CLIPS> (send [a] put-woz 1)
[MSGFUN3] woz slot in [a] of A: write access denied.
[PRCCODE4] Execution halted during the actions of message-handler put-bar primary
in class A
FALSE
CLIPS> (send [a] print)
[a] of A
(foo 34)
(bar abc)
(woz 65)
CLIPS>

9.3.3.5 Inheritance Propagation Facet

An inherit facet says that a slot in a class can be given to instances of other classes that inherit
from the first class. This is the default. The no-inherit facet says that only direct instances of this
class will get the slot.

Preview from Notesale.co.uk

Page 122 of 428

 CLIPS Reference Manual

CLIPS Basic Programming Guide 97

Example
CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)
 (role concrete)
 (slot foo (propagation inherit))
 (slot bar (propagation no-inherit)))
CLIPS> (defclass B (is-a A))
CLIPS> (make-instance a of A)
[a]
CLIPS> (make-instance b of B)
[b]
CLIPS> (send [a] print)
[a] of A
(foo nil)
(bar nil)
CLIPS> (send [b] print)
[b] of B
(foo nil)
CLIPS>

9.3.3.6 Source Facet

When obtaining slots from the class precedence list during instance creation, the default behavior
is to take the facets from the most specific class which gives the slot and give default values to
any unspecified facets. This is the behavior specified by the exclusive facet. The composite facet
causes facets which are not explicitly specified by the most specific class to be taken from the
next most specific class. Thus, in an overlay fashion, the facets of an instance’s slot can be
specified by more than one class. Note that even though facets may be taken from superclasses,
the slot is still considered to reside in the new class for purposes of visibility (see section
9.3.3.8). One good example of a use of this feature is to pick up a slot definition and change only
its default value for a new derived class.

Example
CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)
 (multislot foo (access read-only)
 (default a b c)))
CLIPS>
(defclass B (is-a A)
 (slot foo (source composite) ; multiple and read-only
 ; from class A
 (default d e f)))
CLIPS> (describe-class B)
===

Concrete: direct instances of this class can be created.
Reactive: direct instances of this class can match defrule patterns.

Direct Superclasses: A
Inheritance Precedence: B A USER OBJECT

Preview from Notesale.co.uk

Page 123 of 428

CLIPS Reference Manual

106 Section 9 - CLIPS Object Oriented Language (COOL)

Example
CLIPS> (clear)
CLIPS> (defclass A (is-a USER) (role concrete))
CLIPS> (make-instance a of A)
[a]
CLIPS>
(defmessage-handler A print-args (?a ?b $?c)
 (printout t (instance-name ?self) " " ?a " " ?b
 " and " (length$?c) " extras: " ?c crlf))
CLIPS> (send [a] print-args 1 2)
[a] 1 2 and 0 extras: ()
CLIPS> (send [a] print-args a b c d)
[a] a b and 2 extras: (c d)
CLIPS>

9.4.2 Message-handler Actions

The body of a message-handler is a sequence of expressions that are executed in order when the
handler is called. The return value of the message-handler is the result of the evaluation of the
last expression in the body.

Handler actions may directly manipulate slots of the active instance. Normally, slots can only be
manipulated by sending the object slot-accessor messages (see sections 9.3.3.9 and 9.4.3).
However, handlers are considered part of the encapsulation (see section 2.6.2) of an object, and
thus can directly view and change the slots of the object. There are several functions which
operate implicitly on the active instance (without the use of messages) and can only be called
from within a message-handler. These functions are discussed in section 12.16.

A shorthand notation is provided for accessing slots of the active instance from within a
message-handler.

Syntax
?self:<slot-name>

Example
CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)
 (role concrete)
 (slot foo (default 1))
 (slot bar (default 2)))
CLIPS>
(defmessage-handler A print-all-slots ()
 (printout t ?self:foo " " ?self:bar crlf))
CLIPS> (make-instance a of A)
[a]
CLIPS> (send [a] print-all-slots)
1 2
CLIPS>

Preview from Notesale.co.uk

Page 132 of 428

CLIPS Reference Manual

108 Section 9 - CLIPS Object Oriented Language (COOL)

(defclass B (is-a A)
 (role concrete)
 (slot foo (visibility public)))
CLIPS> (make-instance b of B)
[b]
CLIPS> (send [b] get-foo)
nil
CLIPS>

9.4.3 Daemons

Daemons are pieces of code which execute implicitly whenever some basic action is taken upon
an instance, such as initialization, deletion, or reading and writing of slots. All these basic actions
are implemented with primary handlers attached to the class of the instance. Daemons may be
easily implemented by defining other types of message-handlers, such as before or after, which
will recognize the same messages. These pieces of code will then be executed whenever the
basic actions are performed on the instance.

Example
CLIPS> (clear)
CLIPS> (defclass A (is-a USER) (role concrete))
CLIPS>
(defmessage-handler A init before ()
 (printout t "Initializing a new instance of class A..."
 crlf))
CLIPS> (make-instance a of A)
Initializing a new instance of class A...
[a]
CLIPS>

9.4.4 Predefined System Message-handlers

CLIPS defines eight primary message-handlers that are attached to the class USER. These
handlers cannot be deleted or modified.

9.4.4.1 Instance Initialization

Syntax
(defmessage-handler USER init primary ())

This handler is responsible for initializing instances with class default values after creation. The
make-instance and initialize-instance functions send the init message to an instance (see
sections 9.6.1 and 9.6.2); the user should never send this message directly. This handler is
implemented using the init-slots function (see section 12.13). User-defined init handlers should
not prevent the system message-handler from responding to an init message (see section 9.5.3).

Preview from Notesale.co.uk

Page 134 of 428

 CLIPS Reference Manual

CLIPS Basic Programming Guide 109

Example
CLIPS> (clear)
CLIPS>
(defclass CAR (is-a USER)
 (role concrete)
 (slot price (default 75000))
 (slot model (default Corniche)))
CLIPS> (watch messages)
CLIPS> (watch message-handlers)
CLIPS> (make-instance Rolls-Royce of CAR)
MSG >> create ED:1 (<Instance-Rolls-Royce>)
HND >> create primary in class USER
 ED:1 (<Instance-Rolls-Royce>)
HND << create primary in class USER
 ED:1 (<Instance-Rolls-Royce>)
MSG << create ED:1 (<Instance-Rolls-Royce>)
MSG >> init ED:1 (<Instance-Rolls-Royce>)
HND >> init primary in class USER
 ED:1 (<Instance-Rolls-Royce>)
HND << init primary in class USER
 ED:1 (<Instance-Rolls-Royce>)
MSG << init ED:1 (<Instance-Rolls-Royce>)
[Rolls-Royce]
CLIPS>

9.4.4.2 Instance Deletion

Syntax
(defmessage-handler USER delete primary ())

This handler is responsible for deleting an instance from the system. The user must directly send
a delete message to an instance. User-defined delete message-handlers should not prevent the
system message-handler from responding to a delete message (see section 9.5.3). The handler
returns the symbol TRUE if the instance was successfully deleted, otherwise it returns the
symbol FALSE.

Example
CLIPS> (send [Rolls-Royce] delete)
MSG >> delete ED:1 (<Instance-Rolls-Royce>)
HND >> delete primary in class USER
 ED:1 (<Instance-Rolls-Royce>)
HND << delete primary in class USER
 ED:1 (<Stale Instance-Rolls-Royce>)
MSG << delete ED:1 (<Stale Instance-Rolls-Royce>)
TRUE
CLIPS>

Preview from Notesale.co.uk

Page 135 of 428

CLIPS Reference Manual

110 Section 9 - CLIPS Object Oriented Language (COOL)

9.4.4.3 Instance Display

Syntax
(defmessage-handler USER print primary ())

This handler prints out slots and their values for an instance.

Example
CLIPS> (make-instance Rolls-Royce of CAR)
MSG >> create ED:1 (<Instance-Rolls-Royce>)
HND >> create primary in class USER
 ED:1 (<Instance-Rolls-Royce>)
HND << create primary in class USER
 ED:1 (<Instance-Rolls-Royce>)
MSG << create ED:1 (<Instance-Rolls-Royce>)
MSG >> init ED:1 (<Instance-Rolls-Royce>)
HND >> init primary in class USER
 ED:1 (<Instance-Rolls-Royce>)
HND << init primary in class USER
 ED:1 (<Instance-Rolls-Royce>)
MSG << init ED:1 (<Instance-Rolls-Royce>)
[Rolls-Royce]
CLIPS> (send [Rolls-Royce] print)
MSG >> print ED:1 (<Instance-Rolls-Royce>)
HND >> print primary in class USER
 ED:1 (<Instance-Rolls-Royce>)
[Rolls-Royce] of CAR
(price 75000)
(model Corniche)
HND << print primary in class USER
 ED:1 (<Instance-Rolls-Royce>)
MSG << print ED:1 (<Instance-Rolls-Royce>)
CLIPS> (unwatch messages)
CLIPS. (unwatch message-handlers)
CLIPS>

9.4.4.4 Directly Modifying an Instance

Syntax
(defmessage-handler USER direct-modify primary
 (?slot-override-expressions))

This handler modifies the slots of an instance directly rather than using put- override messages to
place the slot values. The slot-override expressions are passed as an EXTERNAL_ADDRESS
data object to the direct-modify handler. This message is used by the functions modify-instance
and active-modify-instance.

Preview from Notesale.co.uk

Page 136 of 428

 CLIPS Reference Manual

CLIPS Basic Programming Guide 111

Example
The following around message-handler could be used to insure that all modify message
slot-overrides are handled using put- messages.

(defmessage-handler USER direct-modify around
 (?overrides)
 (send ?self message-modify ?overrides))

9.4.4.5 Modifying an Instance using Messages

Syntax
(defmessage-handler USER message-modify primary
 (?slot-override-expressions)

This handler modifies the slots of an instance using put- messages for each slot update. The
slot-override expressions are passed as an EXTERNAL_ADDRESS data object to the
message-modify handler. This message is used by the functions message-modify-instance and
active-message-modify-instance.

9.4.4.6 Directly Duplicating an Instance

Syntax
(defmessage-handler USER direct-duplicate primary
 (?new-instance-name ?slot-override-expressions))

This handler duplicates an instance without using put- messages to assign the slot-overrides. Slot
values from the original instance and slot overrides are directly copied. If the name of the new
instance created matches a currently existing instance-name, then the currently existing instance
is deleted without use of a message. The slot-override expressions are passed as an
EXTERNAL_ADDRESS data object to the direct-duplicate handler. This message is used by the
functions duplicate-instance and active-duplicate-instance.

Example
The following around message-handler could be used to insure that all duplicate message
slot-overrides are handled using put- messages.

(defmessage-handler USER direct-duplicate around
 (?new-name ?overrides)
 (send ?self message-duplicate ?new-name ?overrides))

Preview from Notesale.co.uk

Page 137 of 428

CLIPS Reference Manual

114 Section 9 - CLIPS Object Oriented Language (COOL)

There must be at least one applicable primary handler for a message, or a message execution
error will be generated (see section 9.5.4).

9.5.3 Shadowed Message-handlers

When one handler must be called by another handler in order to be executed, the first handler is
said to be shadowed by the second. An around handler shadows all handlers except more
specific around handlers. A primary handler shadows all more general primary handlers.

Messages should be implemented using the declarative technique, if possible. Only the handler
roles will dictate which handlers get executed; only before and after handlers and the most
specific primary handler are used. This allows each handler for a message to be completely
independent of the other message-handlers. However, if around handlers or shadowed primary
handlers are necessary, then the handlers must explicitly take part in the message dispatch by
calling other handlers they are shadowing. This is called the imperative technique. The functions
call-next-handler and override-next-handler (see section 12.16.2) allow a handler to execute
the handler it is shadowing. A handler can call the same shadowed handler multiple times.

Example
(defmessage-handler USER my-message around ()
 (call-next-handler))
(defmessage-handler USER my-message before ())
(defmessage-handler USER my-message ()
 (call-next-handler))
(defmessage-handler USER my-message after ())
(defmessage-handler OBJECT my-message around ()
 (call-next-handler))
(defmessage-handler OBJECT my-message before ())
(defmessage-handler OBJECT my-message ())
(defmessage-handler OBJECT my-message after ())

For a message sent to an instance of a class which inherits from USER,
the diagram to the right illustrates the order of execution for the handlers
attached to the classes USER and OBJECT. The brackets indicate where
a particular handler begins and ends execution. Handlers enclosed within
a bracket are shadowed.

USER around begin

OBJECT around begin

USER before

OBJECT before

USER primary begin

OBJECT primary

USER primary end

OBJECT after

USER after

OBJECT around end

USER around end

9.5.4 Message Execution Errors

If an error occurs at any time during the execution of a message-handler, any currently executing
handlers will be aborted, any handlers which have not yet started execution will be ignored, and
the send function will return the symbol FALSE.

Preview from Notesale.co.uk

Page 140 of 428

CLIPS Reference Manual

118 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS>
(defclass A (is-a USER) (role concrete)
 (slot x (create-accessor write) (default 1)))
CLIPS>
(definstances A-OBJECTS
 (a1 of A)
 (of A (x 65)))
CLIPS> (watch instances)
CLIPS> (reset)
==> instance [initial-object] of INITIAL-OBJECT
==> instance [a1] of A
==> instance [gen1] of A
CLIPS> (reset)
<== instance [initial-object] of INITIAL-OBJECT
<== instance [a1] of A
<== instance [gen1] of A
==> instance [initial-object] of INITIAL-OBJECT
==> instance [a1] of A
==> instance [gen2] of A
CLIPS> (unwatch instances)
CLIPS>

Upon startup and after a clear command, CLIPS automatically constructs the following
definstances.

(definstances initial-object
 (initial-object of INITIAL-OBJECT))

The class INITIAL-OBJECT is a predefined system class that is a direct subclass of USER.

(defclass INITIAL-OBJECT
 (is-a USER)
 (role concrete)
 (pattern-match reactive))

The initial-object definstances and the INITIAL-OBJECT class are only defined if both the
object system and defrules are enabled (see section 2 of the Advanced Programming Guide). The
INITIAL-OBJECT class cannot be deleted, but the initial-object definstances can. See section
5.4.9 for details on default patterns which pattern-match against the initial-object instance.

Important Note
Although you can delete the initial-object definstances, in practice you never should since many
conditional elements rely on the existence of the initial-object instance for correct operation.
Similarly, the initial-object instance created by the initial-object definstances when a reset
command is issued, should never be deleted by a program.

9.6.2 Reinitializing Existing Instances

The initialize-instance function provides the ability to reinitialize an existing instance with class
defaults and new slot-overrides. The return value of initialize-instance is the name of the

Preview from Notesale.co.uk

Page 144 of 428

 CLIPS Reference Manual

CLIPS Basic Programming Guide 123

HND >> direct-modify primary in class USER.
 ED:1 (<Instance-a> <Pointer-0019CD5A>)
::= local slot foo in instance a <- 0
HND << direct-modify primary in class USER.
 ED:1 (<Instance-a> <Pointer-0019CD5A>)
MSG << direct-modify ED:1 (<Instance-a> <Pointer-0019CD5A>)
TRUE
CLIPS> (unwatch all)
CLIPS>

9.6.7.2 Directly Modifying an Instance with Immediate Pattern-Matching

The active-modify-instance function uses the direct-modify message to change the values of
the instance. Object pattern-matching occurs as slot modifications are being performed.

Syntax
(active-modify-instance <instance> <slot-override>*)

9.6.7.3 Modifying an Instance using Messages with Delayed Pattern-Matching

The message-modify-instance function uses the message-modify message to change the values
of the instance. Object pattern-matching is delayed until all of the slot modifications have been
performed.

Syntax
(message-modify-instance <instance> <slot-override>*)

Example
CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)
 (role concrete)
 (slot foo)
 (slot bar (create-accessor write)))
CLIPS> (make-instance a of A)
[a]
CLIPS> (watch all)
CLIPS> (message-modify-instance a (bar 4))
MSG >> message-modify ED:1 (<Instance-a> <Pointer-009F04A0>)
HND >> message-modify primary in class USER
 ED:1 (<Instance-a> <Pointer-009F04A0>)
MSG >> put-bar ED:2 (<Instance-a> 4)
HND >> put-bar primary in class A
 ED:2 (<Instance-a> 4)
::= local slot bar in instance a <- 4
HND << put-bar primary in class A
 ED:2 (<Instance-a> 4)
MSG << put-bar ED:2 (<Instance-a> 4)
HND << message-modify primary in class USER
 ED:1 (<Instance-a> <Pointer-009F04A0>)
MSG << message-modify ED:1 (<Instance-a> <Pointer-009F04A0>)

Preview from Notesale.co.uk

Page 149 of 428

CLIPS Reference Manual

126 Section 9 - CLIPS Object Oriented Language (COOL)

<== instance [b] of A
HND << delete primary in class USER
 ED:2 (<Stale Instance-b>)
MSG << delete ED:2 (<Stale Instance-b>)
==> instance [b] of A
MSG >> create ED:2 (<Instance-b>)
HND >> create primary in class USER
 ED:2 (<Instance-b>)
HND << create primary in class USER
 ED:2 (<Instance-b>)
MSG << create ED:2 (<Instance-b>)
MSG >> put-bar ED:2 (<Instance-b> 6)
HND >> put-bar primary in class A
 ED:2 (<Instance-b> 6)
::= local slot bar in instance b <- 6
HND << put-bar primary in class A
 ED:2 (<Instance-b> 6)
MSG << put-bar ED:2 (<Instance-b> 6)
MSG >> put-foo ED:2 (<Instance-b> 0)
HND >> put-foo primary in class A
 ED:2 (<Instance-b> 0)
::= local slot foo in instance b <- 0
HND << put-foo primary in class A
 ED:2 (<Instance-b> 0)
MSG << put-foo ED:2 (<Instance-b> 0)
MSG >> init ED:2 (<Instance-b>)
HND >> init primary in class USER
 ED:2 (<Instance-b>)
HND << init primary in class USER
 ED:2 (<Instance-b>)
MSG << init ED:2 (<Instance-b>)
HND << message-duplicate primary in class USER
 ED:1 (<Instance-a> [b] <Pointer-009F04A0>)
MSG << message-duplicate ED:1 (<Instance-a> [b] <Pointer-009F04A0>)
[b]
CLIPS> (unwatch all)
CLIPS>

9.6.8.4 Duplicating an Instance using Messages with Immediate Pattern-Matching

The active-message-duplicate-instance function uses the message-duplicate message to change
the values of the instance. Object pattern-matching occurs as slot modifications are being
performed.

Syntax
(active-message-duplicate-instance <instance>
 [to <instance-name>]
 <slot-override>*)

Preview from Notesale.co.uk

Page 152 of 428

CLIPS Reference Manual

130 Section 9 - CLIPS Object Oriented Language (COOL)

Example
For the instance-set template given in section 9.7.1, thirty instance-sets would be generated in the
following order:

1. [Boy-1] [Girl-1]
2. [Boy-1] [Girl-2]
3. [Boy-1] [Woman-1]
4. [Boy-1] [Woman-2]
5. [Boy-1] [Woman-3]
6. [Boy-2] [Girl-1]
7. [Boy-2] [Girl-2]
8. [Boy-2] [Woman-1]
9. [Boy-2] [Woman-2]
10. [Boy-2] [Woman-3]
11. [Boy-3] [Girl-1]
12. [Boy-3] [Girl-2]
13 [Boy-3] [Woman-1]
14. [Boy-3] [Woman-2]
15. [Boy-3] [Woman-3]

16. [Boy-4] [Girl-1]
17. [Boy-4] [Girl-2]
18. [Boy-4] [Woman-1]
19. [Boy-4] [Woman-2]
20. [Boy-4] [Woman-3]
21. [Man-1] [Girl-1]
22. [Man-1] [Girl-2]
23. [Man-1] [Woman-1]
24. [Man-1] [Woman-2]
25. [Man-1] [Woman-3]
26. [Man-2] [Girl-1]
27. [Man-2] [Girl-2]
28. [Man-2] [Woman-1]
29. [Man-2] [Woman-2]
30. [Man-2] [Woman-3]

Example
Consider the following instance-set template:

((?f1 FEMALE) (?f2 FEMALE))

Twenty-five instance-sets would be generated in the following order:

1. [Girl-1] [Girl-1]
2. [Girl-1] [Girl-2]
3. [Girl-1] [Woman-1]
4. [Girl-1] [Woman-2]
5. [Girl-1] [Woman-3]
6. [Girl-2] [Girl-1]
7. [Girl-2] [Girl-2]
8. [Girl-2] [Woman-1]
9. [Girl-2] [Woman-2]
10.[Girl-2] [Woman-3]
11.[Woman-1] [Girl-1]
12.[Woman-1] [Girl-2]
13.[Woman-1] [Woman-1]

14.[Woman-1] [Woman-2]
15.[Woman-1] [Woman-3]
16.[Woman-2] [Girl-1]
17.[Woman-2] [Girl-2]
18.[Woman-2] [Woman-1]
19.[Woman-2] [Woman-2]
20.[Woman-2] [Woman-3]
21.[Woman-3] [Girl-1]
22.[Woman-3] [Girl-2]
23.[Woman-3] [Woman-1]
24.[Woman-3] [Woman-2]
25.[Woman-3] [Woman-3]

The instances of class GIRL are examined before the instances of class WOMAN because GIRL
was defined before WOMAN.

9.7.3 Query Definition

A query is a user-defined boolean expression applied to an instance-set to determine if the
instance-set meets further user-defined restrictions. If the evaluation of this expression for an
instance-set is anything but the symbol FALSE, the instance-set is said to satisfy the query.

Preview from Notesale.co.uk

Page 156 of 428

 CLIPS Reference Manual

CLIPS Basic Programming Guide 131

Syntax
<query> ::= <boolean-expression>

Example
Continuing the previous example, one query might be that the two instances in an ordered pair
have the same age.

(= (send ?man-or-boy get-age) (send ?woman-or-girl get-age))

Within a query, slots of instance-set members can be directly read with a shorthand notation
similar to that used in message-handlers (see section 9.4.2). If message-passing is not explicitly
required for reading a slot (i.e. there are no accessor daemons for reads), then this second method
of slot access should be used, for it gives a significant performance benefit.

Syntax
<instance-set-member-variable>:<slot-name>

Example
The previous example could be rewritten as:

(= ?man-or-boy:age ?woman-or-girl:age)

Since only instance-sets which satisfy a query are of interest, and the query is evaluated for all
possible instance-sets, the query should not have any side-effects.

9.7.4 Distributed Action Definition

A distributed action is a user-defined expression evaluated for each instance-set which satisfies
a query. Unlike queries, distributed actions must use messages to read slots of instance-set
members. If more than one action is required, use the progn function (see section 12.6.5) to
group them.

Action Syntax
<action> ::= <expression>

Example
Continuing the previous example, one distributed action might be to simply print out the ordered
pair to the screen.

(printout t "(" ?man-or-boy "," ?woman-or-girl ")" crlf)

Preview from Notesale.co.uk

Page 157 of 428

CLIPS Reference Manual

132 Section 9 - CLIPS Object Oriented Language (COOL)

9.7.5 Scope in Instance-set Query Functions

An instance-set query function can be called from anywhere that a regular function can be called.
If a variable from an outer scope is not masked by an instance-set member variable, then that
variable may be referenced within the query and action. In addition, rebinding variables within
an instance-set function action is allowed. However, attempts to rebind instance-set member
variables will generate errors. Binding variables is not allowed within a query. Instance-set query
functions can be nested.

Example
CLIPS>
(deffunction count-instances (?class)
 (bind ?count 0)
 (do-for-all-instances ((?ins ?class)) TRUE
 (bind ?count (+ ?count 1)))
 ?count)
CLIPS>
(deffunction count-instances-2 (?class)
 (length (find-all-instances ((?ins ?class)) TRUE)))
CLIPS> (count-instances WOMAN)
3
CLIPS> (count-instances-2 BOY)
4
CLIPS>

Instance-set member variables are only in scope within the instance-set query function.
Attempting to use instance-set member variables in an outer scope will generate an error.

Example
CLIPS>
(deffunction last-instance (?class)
 (any-instancep ((?ins ?class)) TRUE)
 ?ins)

[PRCCODE3] Undefined variable ins referenced in deffunction.

ERROR:
(deffunction last-instance
 (?class)
 (any-instancep ((?ins ?class))
 TRUE)
 ?ins
)
CLIPS>

9.7.6 Errors during Instance-set Query Functions

If an error occurs during an instance-set query function, the function will be immediately
terminated and the return value will be the symbol FALSE.

Preview from Notesale.co.uk

Page 158 of 428

 CLIPS Reference Manual

CLIPS Basic Programming Guide 133

9.7.7 Halting and Returning Values from Query Functions

The functions break and return are now valid inside the action of the instance-set query
functions do-for-instance, do-for-all-instances and delayed-do-for-all-instances. The return
function is only valid if it is applicable in the outer scope, whereas the break function actually
halts the query.

9.7.8 Instance-set Query Functions

The instance query system in COOL provides six functions. For a given set of instances, all six
query functions will iterate over these instances in the same order (see section 9.7.2). However,
if a particular instance is deleted and recreated, the iteration order will change.

9.7.8.1 Testing if Any Instance-set Satisfies a Query

This function applies a query to each instance-set which matches the template. If an instance-set
satisfies the query, then the function is immediately terminated, and the return value is the
symbol TRUE. Otherwise, the return value is the symbol FALSE.

Syntax
(any-instancep <instance-set-template> <query>)

Example
Are there any men over age 30?

CLIPS> (any-instancep ((?man MAN)) (> ?man:age 30))
TRUE
CLIPS>

9.7.8.2 Determining the First Instance-set Satisfying a Query

This function applies a query to each instance-set which matches the template. If an instance-set
satisfies the query, then the function is immediately terminated, and the instance-set is returned
in a multifield value. Otherwise, the return value is a zero-length multifield value. Each field of
the multifield value is an instance-name representing an instance-set member.

Syntax
(find-instance <instance-set-template> <query>)

Example
Find the first pair of a man and a woman who have the same age.

CLIPS>
(find-instance ((?m MAN) (?w WOMAN)) (= ?m:age ?w:age))
([Man-1] [Woman-1])

Preview from Notesale.co.uk

Page 159 of 428

CLIPS Reference Manual

134 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS>

9.7.8.3 Determining All Instance-sets Satisfying a Query

This function applies a query to each instance-set which matches the template. Each instance-set
which satisfies the query is stored in a multifield value. This multifield value is returned when
the query has been applied to all possible instance-sets. If there are n instances in each
instance-set, and m instance-sets satisfied the query, then the length of the returned multifield
value will be n * m. The first n fields correspond to the first instance-set, and so on. Each field of
the multifield value is an instance-name representing an instance-set member. The multifield
value can consume a large amount of memory due to permutational explosion, so this function
should be used judiciously.

Syntax
(find-all-instances <instance-set-template> <query>)

Example
Find all pairs of a man and a woman who have the same age.

CLIPS>
(find-all-instances ((?m MAN) (?w WOMAN)) (= ?m:age ?w:age))
([Man-1] [Woman-1] [Man-2] [Woman-2])
CLIPS>

9.7.8.4 Executing an Action for the First Instance-set Satisfying a Query

This function applies a query to each instance-set which matches the template. If an instance-set
satisfies the query, the specified action is executed, and the function is immediately terminated.
The return value is the evaluation of the action. If no instance-set satisfied the query, then the
return value is the symbol FALSE.

Syntax
(do-for-instance <instance-set-template> <query> <action>*)

Example
Print out the first triplet of different people that have the same age. The calls to neq in the query
eliminate the permutations where two or more members of the instance-set are identical.

CLIPS>
(do-for-instance ((?p1 PERSON) (?p2 PERSON) (?p3 PERSON))
 (and (= ?p1:age ?p2:age ?p3:age)
 (neq ?p1 ?p2)
 (neq ?p1 ?p3)
 (neq ?p2 ?p3))
 (printout t ?p1 " " ?p2 " " ?p3 crlf))
[Girl-2] [Boy-2] [Boy-3]
CLIPS>

Preview from Notesale.co.uk

Page 160 of 428

CLIPS Reference Manual

138 Section 10 - Defmodule Construct

Example
(defmodule FOO
 (import BAR ?ALL)
 (import YAK deftemplate ?ALL)
 (import GOZ defglobal x y z)
 (export defgeneric +)
 (export defclass ?ALL))

10.2 SPECIFYING A CONSTRUCT’S MODULE

The module in which a construct is placed can be specified when the construct is defined. The
deffacts, deftemplate, defrule, deffunction, defgeneric, defclass, and definstances constructs all
specify the module for the construct by including it as part of the name. The module of a
defglobal construct is indicated by specifying the module name after the defglobal keyword. The
module of a defmessage-handler is specified as part of the class specifier. The module of a
defmethod is specified as part of the generic function specifier. For example, the following
constructs would be placed in the DETECTION module.

(defrule DETECTION::Find-Fault
 (sensor (name ?name) (value bad))
 =>
 (assert (fault (name ?name))))

(defglobal DETECTION ?*count* = 0)

(defmessage-handler DETECTION::COMPONENT get-charge ()
 (* ?self:flux ?self:flow))

(defmethod DETECTION::+ ((?x STRING) (?y STRING))
 (str-cat ?x ?y))

Example
CLIPS> (clear)
CLIPS> (defmodule A)
CLIPS> (defmodule B)
CLIPS> (defrule foo =>)
CLIPS> (defrule A::bar =>)
CLIPS> (list-defrules)
bar
For a total of 1 defrule.
CLIPS> (set-current-module B)
A
CLIPS> (list-defrules)
foo
For a total of 1 defrule.
CLIPS>

Preview from Notesale.co.uk

Page 164 of 428

CLIPS Reference Manual

142 Section 10 - Defmodule Construct

knowledge base to be partitioned such that rules and other constructs can only “see” those facts
and instances which are of interest to them. Note that the initial-fact deftemplate and the
INITIAL-OBJECT defclass must explicitly be imported from the MAIN module. Rules which
have the initial-fact or initial-object pattern added to their LHS (such as a rule thats first CE is a
not CE) will not be activated unless the corresponding construct for the pattern is imported.

Example

CLIPS> (clear)
CLIPS> (defmodule A (export deftemplate foo bar))
CLIPS> (deftemplate A::foo (slot x))
CLIPS> (deftemplate A::bar (slot y))
CLIPS> (deffacts A::info (foo (x 3)) (bar (y 4)))
CLIPS> (defmodule B (import A deftemplate foo))
CLIPS> (reset)
CLIPS> (facts A)
f-1 (foo (x 3))
f-2 (bar (y 4))
For a total of 2 facts.
CLIPS> (facts B)
f-1 (foo (x 3))
For a total of 1 fact.
CLIPS>

10.5.1 Specifying Instance-Names

Instance-names are required to be unique within a particular module, but multiple instances of
the same name may be in scope at any one time. The syntax of instance-names has been
extended to allow module specifications (note that the left and right brackets in bold are to be
typed and do not indicate an optional part of the syntax).

Syntax

<instance-name> ::= [<symbol>] |
 [::<symbol>] |
 [<module>::symbol>]

Specifying just a symbol as the instance-name, such as [Rolls-Royce], will search for the
instance in the current module only. Specifying only the :: before the name, such as
[::Rolls-Royce], will search for the instance first in the current module and then recursively in
the imported modules as defined in the module definition. Specifying both a symbol and a
module name, such as [CARS::Rolls-Royce], searches for the instance only in the specified
module. Regardless of which format is specified, the class of the instance must be in scope of the
current module in order for the instance to be found.

10.6 MODULES AND RULE EXECUTION

Each module has its own pattern-matching network for its rules and its own agenda. When a run
command is given, the agenda of the module which is the current focus is executed (note that the

Preview from Notesale.co.uk

Page 168 of 428

CLIPS Reference Manual

146 Section 11 - Constraint Attributes

INSTANCE for this attribute is equivalent to using both INSTANCE-NAME and
INSTANCE-ADDRESS. ?VARIABLE allows any type to be stored.

11.2 ALLOWED CONSTANT ATTRIBUTES

The allowed constant attributes allow the constant values of a specific type which can be stored
in a slot to be restricted. The list of values provided should either be a list of constants of the
specified type or the keyword ?VARIABLE which means any constant of that type is allowed.
The allowed-values attribute allows the slot to be restricted to a specific set of values
(encompassing all types). Note the difference between using the attribute (allowed-symbols red
green blue) and (allowed-values red green blue). The allowed-symbols attribute states that if the
value is of type symbol, then its value must be one of the listed symbols. The allowed-values
attribute completely restricts the allowed values to the listed values. The allowed-classes
attribute does not restrict the slot value in the same manner as the other allowed constant
attributes. Instead, if this attribute is specified and the slot value is either an instance address or
instance name, then the class to which the instance belongs must be a class specified in the
allowed-classes attribute or be a subclass of one of the specified classes.

Syntax
<allowed-constant-attribute>
 ::= (allowed-symbols <symbol-list>) |
 (allowed-strings <string-list>) |
 (allowed-lexemes <lexeme-list> |
 (allowed-integers <integer-list>) |
 (allowed-floats <float-list>) |
 (allowed-numbers <number-list>) |
 (allowed-instance-names <instance-list>) |
 (allowed-classes <class-name-list>)
 (allowed-values <value-list>)

<symbol-list> ::= <symbol>+ | ?VARIABLE

<string-list> ::= <string>+ | ?VARIABLE

<lexeme-list> ::= <lexeme>+ | ?VARIABLE

<integer-list> ::= <integer>+ | ?VARIABLE

<float-list> ::= <float>+ | ?VARIABLE

<number-list> ::= <number>+ | ?VARIABLE

<instance-name-list> ::= <instance-name>+ | ?VARIABLE

<class-name-list> ::= <class-name>+ | ?VARIABLE

<value-list> ::= <constant>+ | ?VARIABLE

Specifying the allowed-lexemes attribute is equivalent to specifying constant restrictions on both
symbols and strings. A string or symbol must match one of the constants in the attribute list.

Preview from Notesale.co.uk

Page 172 of 428

CLIPS Reference Manual

150 Section 11 - Constraint Attributes

(defrule error
 (foo (x $?x))
 (bar (y $?y))
 (woz (z $?x $?y))
 =>)
CLIPS>

The variable ?x, found in the first pattern, can have a maximum of two fields. The variable ?y,
found in the second pattern, can have a maximum of three fields. Added together, both variables
have a maximum of five fields. Since slot z in the the third pattern has a minimum cardinality of
seven, the variables ?x and ?y cannot satisfy the minimum cardinality restriction for this slot.

Example 3
CLIPS> (deftemplate foo (slot x (type SYMBOL)))
CLIPS>
(defrule error
 (foo (x ?x))
 (test (> ?x 10))
 =>)

[RULECSTR2] Previous variable bindings of ?x caused the type restrictions for
argument #1 of the expression (> ?x 10)
found in CE #2 to be violated

ERROR:
(defrule error
 (foo (x ?x))
 (test (> ?x 10))
 =>)
CLIPS>

The variable ?x, found in slot x of the first pattern, must be a symbol. Since the > function
expects numeric values for its arguments, an error occurs.

Preview from Notesale.co.uk

Page 176 of 428

CLIPS Reference Manual

166 Section 12 - Actions and Functions

The build function is not available for binary-load only or run-time CLIPS configurations (see
the Advanced Programming Guide).

Example
CLIPS> (clear)
CLIPS> (build "(defrule foo (a) => (assert (b)))")
TRUE
CLIPS> (rules)
foo
For a total of 1 rule.
CLIPS>

12.3.7 Converting a String to Uppercase

The upcase function will return a string or symbol with uppercase alphabetic characters.

Syntax
(upcase <string-or-symbol-expression>)

Example
CLIPS> (upcase "This is a test of upcase")
"THIS IS A TEST OF UPCASE"
CLIPS> (upcase A_Word_Test_for_Upcase)
A_WORD_TEST_FOR_UPCASE
CLIPS>

12.3.8 Converting a String to Lowercase

The lowcase function will return a string or symbol with lowercase alphabetic characters.

Syntax
(lowcase <string-or-symbol-expression>)

Example
CLIPS> (lowcase "This is a test of lowcase")
"this is a test of lowcase"
CLIPS> (lowcase A_Word_Test_for_Lowcase)
a_word_test_for_lowcase
CLIPS>

12.3.9 Comparing Two Strings

The str-compare function will compare two strings to determine their logical relationship (i.e.,
equal to, less than, greater than). The comparison is performed character-by-character until the
strings are exhausted (implying equal strings) or unequal characters are found. The positions of
the unequal characters within the ASCII character set are used to determine the logical
relationship of unequal strings.

Preview from Notesale.co.uk

Page 192 of 428

 CLIPS Reference Manual

CLIPS Basic Programming Guide 169

symbol, a number, or a string. Several logical names are predefined by CLIPS and are used
extensively throughout the CLIPS code. These are

Name Description
stdin The default for all user inputs. The read and readline functions

read from stdin if t is specified as the logical name.
stdout The default for all user outputs. The format and printout

functions send output to stdout if t is specified as the logical
name.

wclips The CLIPS prompt is sent to this logical name.
wdialog All informational messages are sent to this logical name.
wdisplay Requests to display CLIPS information, such as facts or rules,

are sent to this logical name.
werror All error messages are sent to this logical name.

wwarning All warning messages are sent to this logical name.
wtrace All watch information is sent to this logical name (with the

exception of compilations which is sent to wdialog).

Any of these logical names may be used anywhere a logical name is expected.

12.4.2 Common I/O Functions

CLIPS provides some of the most commonly needed I/O capabilities through several predefined
functions.

12.4.2.1 Open

The open function allows a user to open a file from the RHS of a rule and attaches a logical
name to it. This function takes three arguments: (1) the name of the file to be opened; (2) the
logical name which will be used by other CLIPS I/O functions to access the file; and (3) an
optional mode specifier. The mode specifier must be one of the following strings:

Mode Means
"r" read access only
"w" write access only
"r+" read and write access
"a" append access only

"wb" binary write access

Preview from Notesale.co.uk

Page 195 of 428

CLIPS Reference Manual

170 Section 12 - Actions and Functions

If the mode is not specified, a default of read access only is assumed. The access mode may not
be meaningful in some operating systems.

Syntax
(open <file-name> <logical-name> [<mode>])

The <file-name> must either be a string or symbol and may include directory specifiers. If a
string is used, the backslash (\) and any other special characters that are part of <file-name> must
be escaped with a backslash. The logical name should not have been used previously. The open
function returns TRUE if it was successful, otherwise FALSE.

Example
CLIPS> (open "myfile.clp" writeFile "w")
TRUE
CLIPS> (open "MS-DOS\\directory\\file.clp" readFile)
TRUE
CLIPS>

12.4.2.2 Close

The close function closes a file stream previously opened with the open command. The file is
specified by a logical name previously attached to the desired stream.

Syntax
(close [<logical-name>])

If close is called without arguments, all open files will be closed. The user is responsible for
closing all files opened during execution. If files are not closed, the contents are not guaranteed
correct, however, CLIPS will attempt to close all open files when the exit command is executed.
The close function returns TRUE if any files were successfully closed, otherwise FALSE.

Example
CLIPS> (open "myfile.clp" writeFile "w")
TRUE
CLIPS> (open "MS-DOS\\directory\\file.clp" readFile)
TRUE
CLIPS> (close writeFile)
TRUE
CLIPS> (close writeFile)
FALSE
CLIPS> (close)
TRUE
CLIPS> (close)
FALSE
CLIPS>

Preview from Notesale.co.uk

Page 196 of 428

CLIPS Reference Manual

188 Section 12 - Actions and Functions

where the first argument to bind, <variable>, is the local or global variable to be bound (it may
have been bound previously). The bind function may also be used within a message-handler's
body to set a slot's value.

If no <expression> is specified, then local variables are unbound and global variables are reset to
their original value. If one <expression> is specified, then the value of <variable> is set to the
return value from evaluating <expression>. If more than one <expression> is specified, then all
of the <expressions> are evaluated and grouped together as a multifield value and the resulting
value is stored in <variable>.

 The bind function returns the symbol FALSE when a local variable is unbound, otherwise, the
return value is the value to which <variable> is set.

Example 1
CLIPS> (defglobal ?*x* = 3.4)
CLIPS> ?*x*
3.4
CLIPS> (bind ?*x* (+ 8 9))
17
CLIPS> ?*x*
17
CLIPS> (bind ?*x* (create$ a b c d))
(a b c d)
CLIPS> ?*x*
(a b c d)
CLIPS> (bind ?*x* d e f)
(d e f)
CLIPS> ?*x*
(d e f)
CLIPS> (bind ?*x*)
3.4
CLIPS> ?*x*
3.4
CLIPS>

Example 2
CLIPS>
(defclass A (is-a USER)
 (role concrete)
 (slot x) (slot y))
CLIPS>
(defmessage-handler A init after ()
 (bind ?self:x 3)
 (bind ?self:y 4))
CLIPS> (make-instance a of A)
[a]
CLIPS> (send [a] print)
[a] of A
(x 3)
(y 4)
CLIPS>

Preview from Notesale.co.uk

Page 214 of 428

CLIPS Reference Manual

200 Section 12 - Actions and Functions

 (slot x)
 (multislot y (cardinality ?VARIABLE 5))
 (multislot z (cardinality 3 ?VARIABLE)))
CLIPS> (deftemplate-slot-cardinality A y)
(0 5)
CLIPS> (deftemplate-slot-cardinality A z)
(3 +oo)
CLIPS>

12.8.4 Testing whether a Deftemplate Slot has a Default

This function returns the symbol static if the specified slot in the specified deftemplate has a
static default (whether explicitly or implicitly defined), the symbol dynamic if the slot has a
dynamic default, or the symbol FALSE if the slot does not have a default. An error is generated
if the specified deftemplate or slot does not exist.

Syntax
(deftemplate-slot-defaultp <deftemplate-name> <slot-name>)

Example
CLIPS> (clear)
CLIPS>
(deftemplate A
 (slot w)
 (slot x (default ?NONE))
 (slot y (default 1))
 (slot z (default-dynamic (gensym))))
CLIPS> (deftemplate-slot-defaultp A w)
static
CLIPS> (deftemplate-slot-defaultp A x)
FALSE
CLIPS> (deftemplate-slot-defaultp A y)
static
CLIPS> (deftemplate-slot-defaultp A z)
dynamic
CLIPS>

12.8.5 Getting the Default Value for a Deftemplate Slot

This function returns the default value associated with a deftemplate slot. If a slot has a dynamic
default, the expression will be evaluated when this function is called. The symbol FALSE is
returned if an error occurs.

Syntax
(deftemplate-slot-default-value <deftemplate-name> <slot-name>)

Example
CLIPS> (clear)
CLIPS>
(deftemplate A

Preview from Notesale.co.uk

Page 226 of 428

 CLIPS Reference Manual

CLIPS Basic Programming Guide 201

 (slot x (default 3))
 (multislot y (default a b c))
 (slot z (default-dynamic (gensym))))
CLIPS> (deftemplate-slot-default-value A x)
3
CLIPS> (deftemplate-slot-default-value A y)
(a b c)
CLIPS> (deftemplate-slot-default-value A z)
gen1
CLIPS> (deftemplate-slot-default-value A z)
gen2
CLIPS>

12.8.6 Deftemplate Slot Existence

This function returns the symbol TRUE if the specified slot is present in the specified
deftemplate, FALSE otherwise.

Syntax
(deftemplate-slot-existp <deftemplate-name> <slot-name>)

Example
CLIPS> (clear)
CLIPS> (deftemplate A (slot x))
CLIPS> (deftemplate-slot-existp A x)
TRUE
CLIPS> (deftemplate-slot-existp A y)
FALSE
CLIPS>

12.8.7 Testing whether a Deftemplate Slot is a Multifield Slot

This function returns the symbol TRUE if the specified slot in the specified deftemplate is a
multifield slot. Otherwise, it returns the symbol FALSE. An error is generated if the specified
deftemplate or slot does not exist.

Syntax
(deftemplate-slot-multip <deftemplate-name> <slot-name>)

Example
CLIPS> (clear)
CLIPS> (deftemplate A (slot x) (multislot y))
CLIPS> (deftemplate-slot-multip A x)
FALSE
CLIPS> (deftemplate-slot-multip A y)
TRUE
CLIPS>

Preview from Notesale.co.uk

Page 227 of 428

CLIPS Reference Manual

208 Section 12 - Actions and Functions

CLIPS> (facts)
f-0 (example fact)
For a total of 1 fact.
CLIPS> (fact-existp 0)
TRUE
CLIPS> (retract 0)
CLIPS> (fact-existp ?*x*)
FALSE
CLIPS>

12.9.8 Determining the Deftemplate (Relation) Name Associated with a Fact

The fact-relation function returns the deftemplate (relation) name associated with the fact.
FALSE is returned if the specified fact does not exist.

Syntax
(fact-relation <fact-address-or-index>)

Example
CLIPS> (clear)
CLIPS> (assert (example fact))
<Fact-0>
CLIPS> (fact-relation 0)
example
CLIPS>

12.9.9 Determining the Slot Names Associated with a Fact

The fact-slot-names function returns the slot names associated with the fact in a multifield
value. The symbol implied is returned for an ordered fact (which has a single implied multifield
slot). FALSE is returned if the specified fact does not exist.

Syntax
(fact-slot-names <fact-address-or-index>)

Example
CLIPS> (clear)
CLIPS> (deftemplate foo (slot bar) (multislot yak))
CLIPS> (assert (foo (bar 1) (yak 2 3)))
<Fact-0>
CLIPS> (fact-slot-names 0)
(bar yak)
CLIPS> (assert (another a b c))
<Fact-1>
CLIPS> (fact-slot-names 1)
(implied)
CLIPS>

Preview from Notesale.co.uk

Page 234 of 428

 CLIPS Reference Manual

CLIPS Basic Programming Guide 219

12.10.2 Determining the Module in which a Deffacts is Defined

This function returns the module in which the specified deffacts name is defined.

Syntax
(deffacts-module <deffacts-name>)

12.11 DEFRULE FUNCTIONS

The following functions provide ancillary capabilities for the defrule construct.

12.11.1 Getting the List of Defrules

The function get-defrule-list returns a multifield value containing the names of all defrule
constructs visible to the module specified by <module-name> or to the current module if none is
specified. If * is specified as the module name, then all defrules are returned.

Syntax
(get-defrule-list)

Example
CLIPS> (clear)
CLIPS> (get-defrule-list)
()
CLIPS> (defrule foo =>)
CLIPS> (defrule bar =>)
CLIPS> (get-defrule-list)
(foo bar)
CLIPS>

12.11.2 Determining the Module in which a Defrule is Defined

This function returns the module in which the specified defrule name is defined.

Syntax
(defrule-module <defrule-name>)

12.12 AGENDA FUNCTIONS

The following functions provide ancillary capabilities manipulating the agenda.

Preview from Notesale.co.uk

Page 245 of 428

 CLIPS Reference Manual

CLIPS Basic Programming Guide 227

 .
<mth-restriction-class-count>
<mth-restriction-first-class>
 .
 .
 .
<mth-restriction-nth-class>

Syntax

(get-method-restrictions <generic-function-name>
 <method-index>)

Example
CLIPS> (clear)
CLIPS>
(defmethod foo 50 ((?a INTEGER SYMBOL) (?b (= 1 1)) $?c))
CLIPS> (get-method-restrictions foo 50)
(2 -1 3 7 11 13 FALSE 2 INTEGER SYMBOL TRUE 0 FALSE 0)
CLIPS>

12.16 CLIPS OBJECT-ORIENTED LANGUAGE (COOL) FUNCTIONS

The following functions provide ancillary capabilities for COOL.

12.16.1 Class Functions

12.16.1.1 Getting the List of Defclasses

The function get-defclass-list returns a multifield value containing the names of all defclass
constructs visible to the module specified by <module-name> or to the current module if none is
specified. If * is specified as the module name, then all defclasses are returned.

Syntax
(get-defclass-list [<module-name>])

Example
CLIPS> (clear)
CLIPS> (get-defclass-list)
(FLOAT INTEGER SYMBOL STRING MULTIFIELD EXTERNAL-ADDRESS FACT-ADDRESS INSTANCE-
ADDRESS INSTANCE-NAME OBJECT PRIMITIVE NUMBER LEXEME ADDRESS INSTANCE USER
INITIAL-OBJECT)
CLIPS> (defclass FOO (is-a USER))
CLIPS> (defclass BAR (is-a USER))
CLIPS> (get-defclass-list)
(FLOAT INTEGER SYMBOL STRING MULTIFIELD EXTERNAL-ADDRESS FACT-ADDRESS INSTANCE-
ADDRESS INSTANCE-NAME OBJECT PRIMITIVE NUMBER LEXEME ADDRESS INSTANCE USER
INITIAL-OBJECT FOO BAR)
CLIPS>

Preview from Notesale.co.uk

Page 253 of 428

 CLIPS Reference Manual

CLIPS Basic Programming Guide 231

Example
CLIPS> (class-subclasses PRIMITIVE)
(NUMBER LEXEME MULTIFIELD EXTERNAL-ADDRESS)
CLIPS> (class-subclasses PRIMITIVE inherit)
(NUMBER INTEGER FLOAT LEXEME SYMBOL STRING MULTIFIELD ADDRESS EXTERNAL-ADDRESS
FACT-ADDRESS INSTANCE-ADDRESS INSTANCE INSTANCE-NAME)
CLIPS>

12.16.1.16 Getting the List of Slots for a Class

This function groups the names of the explicitly defined slots of a class into a multifield variable.
If the optional argument “inherit” is given, inherited slots are also included. A multifield of
length zero is returned if an error occurs.

Syntax
(class-slots <class-name> [inherit])

Example
CLIPS> (defclass A (is-a USER) (slot x))
CLIPS> (defclass B (is-a A) (slot y))
CLIPS> (class-slots B)
(y)
CLIPS> (class-slots B inherit)
(x y)
CLIPS>

12.16.1.17 Getting the List of Message-Handlers for a Class

This function groups the class names, message names and message types of the
message-handlers attached direct to class into a multifield variable (implicit slot-accessors are
not included). If the optional argument “inherit” is given, inherited message-handlers are also
included. A multifield of length zero is returned if an error occurs.

Syntax
(get-defmessage-handler-list <class-name> [inherit])

Example
CLIPS> (clear)
CLIPS> (defclass A (is-a USER))
CLIPS> (defmessage-handler A foo ())
CLIPS> (get-defmessage-handler-list A)
(A foo primary)
CLIPS> (get-defmessage-handler-list A inherit)
(USER init primary USER delete primary USER create primary USER print primary USER
direct-modify primary USER message-modify primary USER direct-duplicate primary
USER message-duplicate primary A foo primary)
CLIPS>

Preview from Notesale.co.uk

Page 257 of 428

CLIPS Reference Manual

234 Section 12 - Actions and Functions

(0 5)
CLIPS> (slot-cardinality A z)
(3 +oo)
CLIPS>

12.16.1.22 Getting the Allowed Values for a Slot

This function groups the allowed values for a slot (specified in any of allowed-… facets for the
slots) into a multifield variable. If no allowed-… facets were specified for the slot, then the
symbol FALSE is returned. A multifield of length zero is returned if an error occurs.

Syntax
(slot-allowed-values <class-name> <slot-name>)

Example
CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)
 (slot x)
 (slot y (allowed-integers 2 3) (allowed-symbols foo)))
CLIPS> (slot-allowed-values A x)
FALSE
CLIPS> (slot-allowed-values A y)
(2 3 foo)
CLIPS>

12.16.1.23 Getting the Numeric Range for a Slot

This function groups the minimum and maximum numeric ranges allowed a slot into a multifield
variable. A minimum value of infinity is indicated by the symbol -oo (the minus character
followed by two lowercase o’s—not zeroes). A maximum value of infinity is indicated by the
symbol +oo (the plus character followed by two lowercase o’s—not zeroes). The symbol FALSE
is returned for slots in which numeric values are not allowed. A multifield of length zero is
returned if an error occurs.

Syntax
(slot-range <class-name> <slot-name>)

Example
CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)
 (slot x)
 (slot y (type SYMBOL))
 (slot z (range 3 10)))
CLIPS> (slot-range A x)
(-oo +oo)
CLIPS> (slot-range A y)
FALSE

Preview from Notesale.co.uk

Page 260 of 428

 CLIPS Reference Manual

CLIPS Basic Programming Guide 235

CLIPS> (slot-range A z)
(3 10)
CLIPS>

12.16.1.24 Getting the Default Value for a Slot

This function returns the default value associated with a slot. If a slot has a dynamic default, the
expression will be evaluated when this function is called. The symbol FALSE is returned if an
error occurs.

Syntax
(slot-default-value <class-name> <slot-name>)

Example
CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)
 (slot x (default 3))
 (multislot y (default a b c))
 (slot z (default-dynamic (gensym))))
CLIPS> (slot-default-value A x)
3
CLIPS> (slot-default-value A y)
(a b c)
CLIPS> (slot-default-value A z)
gen1
CLIPS> (slot-default-value A z)
gen2
CLIPS>

12.16.1.25 Setting the Defaults Mode for Classes

This function sets the defaults mode used when classes are defined. The old mode is the return
value of this function.

Syntax
(set-class-defaults-mode <mode>)

where <mode> is either convenience or conservation. By default, the class defaults mode is
convenience. If the mode is convenience, then for the purposes of role inheritance, system
defined class behave as concrete classes; for the purpose of pattern-match inheritance, system
defined classes behave as reactive classes unless the inheriting class is abstract; and the default
setting for the create-accessor facet of the class’ slots is read-write. If the class defaults mode is
conservation, then the role and reactivity of system-defined classes is unchanged for the purposes
of role and pattern-match inheritance and the default setting for the create-accessor facet of the
class’ slots is ?NONE.

Preview from Notesale.co.uk

Page 261 of 428

 CLIPS Reference Manual

CLIPS Basic Programming Guide 237

12.16.2.2 Calling Shadowed Handlers

If the conditions are such that the function next-handlerp would return the symbol TRUE, then
calling this function will execute the shadowed method. Otherwise, a message execution error
(see section 9.5.4) will occur. In the event of an error, the return value of this function is the
symbol FALSE, otherwise it is the return value of the shadowed handler. The shadowed handler
is passed the same arguments as the calling handler.

A handler may continue execution after calling call-next-handler. In addition, a handler may
make multiple calls to call-next-handler, and the same shadowed handler will be executed each
time.

Syntax
(call-next-handler)

Example
CLIPS> (clear)
CLIPS> (defclass A (is-a USER) (role concrete))
CLIPS>
(defmessage-handler A print-args ($?any)
 (printout t "A: " ?any crlf)
 (if (next-handlerp) then
 (call-next-handler)))
CLIPS>
(defmessage-handler USER print-args ($?any)
 (printout t "USER: " ?any crlf))
CLIPS> (make-instance a of A)
[a]
CLIPS> (send [a] print-args 1 2 3 4)
A: (1 2 3 4)
USER: (1 2 3 4)
CLIPS>

12.16.2.3 Calling Shadowed Handlers with Different Arguments

This function is identical to call-next-handler except that this function can change the
arguments passed to the shadowed handler.

Syntax
(override-next-handler <expression>*)

Example
CLIPS> (clear)
CLIPS> (defclass A (is-a USER) (role concrete))
CLIPS>
(defmessage-handler A print-args ($?any)
 (printout t "A: " ?any crlf)
 (if (next-handlerp) then
 (override-next-handler (rest$?any))))

Preview from Notesale.co.uk

Page 263 of 428

 CLIPS Reference Manual

CLIPS Basic Programming Guide 255

Syntax
(apropos <lexeme>)

Example
CLIPS> (apropos pen)
dependents
mv-append
open
dependencies
CLIPS>

13.2 DEBUGGING COMMANDS

The following commands control the CLIPS debugging features.

13.2.1 Generating Trace Files

Sends all information normally sent to the logical names wclips, wdialog, wdisplay, werror,
wwarning, wtrace, and stdout to <file-name> as well as to their normal destination.
Additionally, all information received from logical name stdin is also sent to <file-name> as
well as being returned by the requesting function. This function returns TRUE if the dribble file
was successfully opened, otherwise FALSE is returned.

Syntax
(dribble-on <file-name>)

13.2.2 Closing Trace Files

Stops sending trace information to the dribble file. This function returns TRUE if the dribble file
was successfully closed, otherwise FALSE is returned.

Syntax
(dribble-off)

13.2.3 Enabling Watch Items

This function causes messages to be displayed when certain CLIPS operations take place.

Syntax
(watch <watch-item>)

<watch-item> ::= all |
 compilations |
 statistics |
 focus |

Preview from Notesale.co.uk

Page 281 of 428

CLIPS Reference Manual

258 Section 13 - Commands

This command displays the current state of all watch items. If called without the <watch-item>
argument, the global watch state of all watch items is displayed. If called with the <watch-item>
argument, the global watch state for that item is displayed followed by the individual watch
states for each item of the specified type which can be watched. This function has no return
value.

Example
CLIPS> (list-watch-items)
facts = off
instances = off
slots = off
rules = off
activations = off
messages = off
message-handlers = off
generic-functions = off
methods = off
deffunctions = off
compilations = on
statistics = off
globals = off
focus = off
CLIPS> (list-watch-items facts)
facts = off
MAIN:
 initial-fact = off
CLIPS>

13.3 DEFTEMPLATE COMMANDS

The following commands manipulate deftemplates.

13.3.1 Displaying the Text of a Deftemplate

Displays the text of a given deftemplate. This function has no return value.

Syntax
(ppdeftemplate <deftemplate-name>)

13.3.2 Displaying the List of Deftemplates

Displays the names of all deftemplates. This function has no return value.

Syntax
(list-deftemplates [<module-name>])

If <module-name> is unspecified, then the names of all deftemplates in the current module are
displayed. If <module-name> is specified, then the names of all deftemplates in the specified

Preview from Notesale.co.uk

Page 284 of 428

CLIPS Reference Manual

268 Section 13 - Commands

13.7 AGENDA COMMANDS

The following commands manipulate agenda.

13.7.1 Displaying the Agenda

Displays all activations on the agenda. This function has no return value.

Syntax
(agenda [<module-name>])

If <module-name> is unspecified, then all activations in the current module (not the current
focus) are displayed. If <module-name> is specified, then all activations on the agenda of the
specified module are displayed. If <module-name> is the symbol *, then the activations on all
agendas in all modules are displayed.

13.7.2 Running CLIPS

Starts execution of the rules. If the optional first argument is positive, execution will cease after
the specified number of rule firings or when the agenda contains no rule activations. If there are
no arguments or the first argument is a negative integer, execution will cease when the agenda
contains no rule activations. If the focus stack is empty, then the MAIN module is automatically
becomes the current focus. The run command has no additional effect if evaluated while rules
are executing. Note that the number of rules fired and timing information is no longer printed
after the completion of the run command unless the statistics item is being watched (see section
13.2). If the rules item is being watched, then an informational message will be printed each time
a rule is fired. This function has no return value.

Syntax
(run [<integer-expression>])

13.7.3 Focusing on a Group of Rules

Pushes one or more modules onto the focus stack. The specified modules are pushed onto the
focus stack in the reverse order they are listed. The current module is set to the last module
pushed onto the focus stack. The current focus is the top module of the focus stack. Thus (focus
A B C) pushes C, then B, then A unto the focus stack so that A is now the current focus. Note
that the current focus is different from the current module. Focusing on a module implies
“remembering” the current module so that it can be returned to later. Setting the current module
with the set-current-module function changes it without remembering the old module. Before a
rule executes, the current module is changed to the module in which the executing rule is defined
(the current focus). This function returns a boolean value: FALSE if an error occurs, otherwise
TRUE.

Preview from Notesale.co.uk

Page 294 of 428

CLIPS Reference Manual

286 Section 13 - Commands

Syntax
(mem-requests)

13.13.3 Releasing Memory Used by CLIPS

Releases all free memory held internally by CLIPS back to the operating system. CLIPS will
automatically call this function if it is running low on memory to allow the operating system to
coalesce smaller memory blocks into larger ones. This function generally should not be called
unless the user knows exactly what he/she is doing (since calling this function can prevent
CLIPS from reusing memory efficiently and thus slow down performance). This function returns
an integer representing the amount of memory freed to the operating system.

Syntax
(release-mem)

13.13.4 Conserving Memory

Turns on or off the storage of information used for save and pretty print commands. This can
save considerable memory in a large system. It should be called prior to loading any constructs.
This function has no return value.

Syntax
(conserve-mem <value>)

where value is either on or off.

13.14 ON-LINE HELP SYSTEM

CLIPS provides an on-line help facility for use from the top-level interface. The help system uses
CLIPS’ external text manipulation capabilities (see section 13.15). Thus, it is possible to add or
change entries in the help file or to construct new help files with information specific to the
user’s system.

13.14.1 Using the CLIPS Help Facility

The help facility displays menus of topics and prompts the user for a choice. It then references
the help file for that information. The help facility can be called with or without a command-line
topic.

Syntax
(help [<path>])

Preview from Notesale.co.uk

Page 312 of 428

Preview from Notesale.co.uk

Page 324 of 428

CLIPS Reference Manual

302 Appendix B – Update Release Notes

• Metrowerks CodeWarrior 9.6 for Mac OS X.

• Xcode 2.3 for Mac OS X.

• Microsoft Visual C++ .NET 2003 for Windows.

B.3 VERSION 6.23

• Fact-Set Query Functions – Six new functions similar to the instance set query functions
have been added for determining and performing actions on sets of facts that satisfy
user-defined queries (see section 12.9.12): any-factp, find-fact, find-all-facts, do-for-fact,
do-for-all-facts, and delayed-do-for-all-facts. The GetNextFactInTemplate function (see
section 4.4.17 of the Advanced Programming Guide) allows iteration from C over the facts
belonging to a specific deftemplate.

• Bug Fixes - The following bugs were fixed by the 6.23 release:

• Passing the wrong number of arguments to a deffunction through the funcall function
could cause unpredictable behavior including memory corruption.

• A large file name (at least 60 characters) passed into the fetch command causes a buffer

overrun.

• A large file name (at least 60 characters) passed into the constructs-to-c command

causes a buffer overrun.

• A large defclass or defgeneric name (at least 500 characters) causes a buffer overrun

when the profile-info command is called.

• A large module or construct name (at least 500 characters) causes a buffer overrun when

the get-<construct>-list command is called.

• The FalseSymbol and TrueSymbol constants were not defined as described in the

Advanced Programming Guide. These constants have have now been defined as macros
so that their corresponding environment companion functions (EnvFalseSymbol and
EnvTrueSymbol) could be defined. See the Advanced Programming Guide for more
details.

• The slot-writablep function returns TRUE for slots having initialize-only access.

Preview from Notesale.co.uk

Page 328 of 428

CLIPS Reference Manual

316 Appendix C - Glossary

conditional
element

A restriction on the LHS of a rule which must be satisfied in order
for the rule to be applicable (also referred to as a CE).

conflict resolution
strategy

A method for determining the order in which rules should fire
among rules with the same salience. There are seven different
conflict resolution strategies: depth, breadth, simplicity,
complexity, lex, mea, and random.

consequent The RHS of a rule.

constant A non-varying single field value directly expressed as a series of

characters.

constraint In patterns, a constraint is a requirement that is placed on the value

of a field from a fact or instance that must be satisified in order for
the pattern to be satisfied. For example, the ~red constraint is
satisfied if the field to which the constraint is applied is not the
symbol red. The term constraint is also used to refer to the legal
values allowed in the slots of facts and instances.

construct A high level CLIPS abstraction used to add components to the

knowledge base.

current focus The module from which activations are selected to be fired.

current module The module to which newly defined constructs that do not have a

module specifier are added. Also is the default module for certain
commands which accept as an optional argument a module name
(such as list-defrules).

daemon A message-handler which executes implicitly whenever some

action is taken upon an object, such as initialization, deletion, or
slot access.

deffunction A non-overloaded function written directly in CLIPS.

deftemplate fact A deftemplate name followed by a list of named fields (slots) and

specific values used to represent a deftemplate object. Note that a
deftemplate fact has no inheritance. Also called a non-ordered
fact.

deftemplate object An informal term for the entity described by a deftemplate. A

Preview from Notesale.co.uk

Page 342 of 428

CLIPS Reference Manual

318 Appendix C - Glossary

character “f”, followed by a dash, followed by the fact-index of
the fact.

fact-index A unique integer index used to identify a particular fact.

fact-list The list of current facts.

field A placeholder (named or unnamed) that has a value.

fire A rule is said to have fired if all of its conditions are satisfied and

the actions then are executed.

float A number that begins with an optional sign followed optionally in

order by zero or more digits, a decimal point, zero or more digits,
and an exponent (consisting of an e or E followed by an integer).
A floating point number must have at least one digit in it (not
including the exponent) and must either contain a decimal point or
an exponent (see section 2.3.1 for more details).

focus As a verb, refers to changing the current focus. As a noun, refers

to the current focus.

focus stack The list of modules that have been focused upon. The module at

the top of the focus stack is the current focus. When all the
activations from the current focus have been fired, the current
focus is removed from the focus stack and the next module on the
stack becomes the current focus.

function A piece of executable code identified by a specific name which

returns a useful value or performs a useful side effect. Typically
only used to refer to functions which do return a value (whereas
commands and actions are used to refer to functions which do not
return a value).

generic dispatch The process whereby applicable methods are selected and

executed for a particular generic function call.

generic function A function written in CLIPS which can do different things

depending on what the number and types of its arguments.

inference engine The mechanism provided by CLIPS which automatically matches

patterns against the current state of the fact-list and list of
instances and determines which rules are applicable.

Preview from Notesale.co.uk

Page 344 of 428

 CLIPS Reference Manual

CLIPS Basic Programming Guide 327

Appendix E - Performance Considerations

This appendix explains various techniques that the user can apply to a CLIPS program to
maximize performance. Included are discussions of pattern ordering in rules, use of deffunctions
in lieu of non-overloaded generic functions, parameter restriction ordering in generic function
methods, and various approaches to improving the speed of message-passing and reading slots of
instances.

E.1 ORDERING OF PATTERNS ON THE LHS

The issues which affect performance of a rule-based system are considerably different from
those which affect conventional programs. This section discusses the single most important
issue: the ordering of patterns on the LHS of a rule.

CLIPS is a rule language based on the RETE algorithm. The RETE algorithm was designed
specifically to provide very efficient pattern-matching. CLIPS has attempted to implement this
algorithm in a manner that combines efficient performance with powerful features. When used
properly, CLIPS can provide very reasonable performance, even on microcomputers. However,
to use CLIPS properly requires some understanding of how the pattern-matcher works.

Prior to initiating execution, each rule is loaded into the system and a network of all patterns that
appear on the LHS of any rule is constructed. As facts and instances of reactive classes (referred
to collectively as pattern entities) are created, they are filtered through the pattern network. If the
pattern entities match any of the patterns in the network, the rules associated with those patterns
are partially instantiated. When pattern entities exist that match all patterns on the LHS of the
rule, variable bindings (if any) are considered. They are considered from the top to the bottom;
i.e., the first pattern on the LHS of a rule is considered, then the second, and so on. If the variable
bindings for all patterns are consistent with the constraints applied to the variables, the rules are
activated and placed on the agenda.

This is a very simple description of what occurs in CLIPS, but it gives the basic idea. A number
of important considerations come out of this. Basic pattern-matching is done by filtering through
the pattern network. The time involved in doing this is fairly constant. The slow portion of basic
pattern-matching comes from comparing variable bindings across patterns. Therefore, the single
most important performance factor is the ordering of patterns on the LHS of the rule.
Unfortunately, there are no hard and fast methods that will always order the patterns properly. At
best, there seem to be three “quasi” methods for ordering the patterns.

1) Most specific to most general. The more wildcards or unbound variables there are in a

pattern, the lower it should go. If the rule firing can be controlled by a single pattern, place
that pattern first. This technique often is used to provide control structure in an expert
system; e.g., some kind of “phase” fact. Putting this kind of pattern first will guarantee that

Preview from Notesale.co.uk

Page 353 of 428

Preview from Notesale.co.uk

Page 356 of 428

CLIPS Reference Manual

334 Appendix G - CLIPS Error Messages

Example:

CLIPS> (defrule foo (a ~?x) =>)

[ARGACCES1] Function <name> expected at least <minimum> and no more than
<maximum> argument(s)
This error occurs when a function receives less than the minimum number or more than the
maximum number of argument(s) expected.

[ARGACCES2] Function <function-name> was unable to open file <file-name>
This error occurs when the specified function cannot open a file.

[ARGACCES3] Function <name1> received a request from function <name2> for
argument #<number> which is non-existent
This error occurs when a function is passed fewer arguments than were expected.

[ARGACCES4] Function <name> expected exactly <number> argument(s)
This error occurs when a function that expects a precise number of argument(s) receives an
incorrect number of arguments.

[ARGACCES4] Function <name> expected at least <number> argument(s)
This error occurs when a function does not receive the minimum number of argument(s) that it
expected.

[ARGACCES4] Function <name> expected no more than <number> argument(s)
This error occurs when a function receives more than the maximum number of argument(s)
expected.

[ARGACCES5] Function <name> expected argument #<number> to be of type
<data-type>
This error occurs when a function is passed the wrong type of argument.

[ARGACCES6] Function <name1> received a request from function <name2> for
argument #<number> which is not of type <data-type>
This error occurs when a function requests from another function the wrong type of argument,
typically a string or symbol, when expecting a number or vice versa.

[BLOAD1] Cannot load <construct type> construct with binary load in effect.
If the bload command was used to load in a binary image, then the named construct cannot be
entered until a clear command has been performed to remove the binary image.

[BLOAD2] File <file-name> is not a binary construct file
This error occurs when the bload command is used to load a file that was not created with the
bsave command.

Preview from Notesale.co.uk

Page 360 of 428

CLIPS Reference Manual

340 Appendix G - CLIPS Error Messages

Example:

CLIPS> (deftemplate foo (slot x (type SYMBOL)))
CLIPS> (assert (foo (x 3)))

[CSTRNPSR1] The <first attribute name> attribute conflicts with the <second attribute
name> attribute.
This error message occurs when two slot attributes conflict.

Example:

CLIPS> (deftemplate foo (slot x (type SYMBOL) (range 0 2)))

[CSTRNPSR2] Minimum <attribute> value must be less than
or equal to the maximum <attribute> value.
The minimum attribute value for the range and cardinality attributes must be less than or equal to
the maximum attribute value for the attribute.

Example:

CLIPS> (deftemplate foo (slot x (range 8 1)))

[CSTRNPSR3] The <first attribute name> attribute cannot be used in conjunction with
the <second attribute name> attribute.
The use of some slot attributes excludes the use of other slot attributes.

Example:

CLIPS> (deftemplate foo (slot x (allowed-values a)
 (allowed-symbols b)))

[CSTRNPSR4] Value does not match the expected type for the <attribute name> attribute.
The arguments to an attribute must match the type expected for that attribute (e.g. integers must
be used for the allowed-integers attribute).

Example:

CLIPS> (deftemplate example (slot x (allowed-integers 3.0)))

[CSTRNPSR5] The cardinality attribute can only be used with multifield slots.
The cardinality attribute can only be used for slots defined with the multislot keyword.

Example:

CLIPS> (deftemplate foo (slot x (cardinality 1 1)))

[DEFAULT1] The default value for a single field slot must be a single field value
This error occurs when the default or default-dynamic attribute for a single-field slot does not
contain a single value or an expression returning a single value.

Example:

CLIPS> (deftemplate error (slot x (default)))

Preview from Notesale.co.uk

Page 366 of 428

CLIPS Reference Manual

360 Appendix G - CLIPS Error Messages

[MSGPASS3] Static reference to slot <name> of class <name> does not apply to
<instance-name> of <class-name>.
This error occurs when a static reference to a slot in a superclass by a message-handler attached
to that superclass is incorrectly applied to an instance of a subclass which redefines that slot.
Static slot references always refer to the slot defined in the class to which the message-handler is
attached.

Example:

CLIPS>
(defclass A (is-a USER)
 (slot foo))
CLIPS>
(defclass B (is-a A)
 (role concrete)
 (slot foo))
CLIPS>
(defmessage-handler A access-foo ()
 ?self:foo)
CLIPS> (make-instance b of B)
[b]
CLIPS> (send [b] access-foo)

[MSGPSR1] A class must be defined before its message-handlers.
A message-handler can only be attached to an existing class.

Example:

CLIPS> (defmessage-handler bogus-class foo ())

[MSGPSR2] Cannot (re)define message-handlers during execution of other
message-handlers for the same class.
No message-handlers for a class can be loaded while any current message-handlers attached to
the class are executing.

Example:

CLIPS> (defclass A (is-a USER))
CLIPS> (make-instance a of A)
[a]
CLIPS>
(defmessage-handler A build-new ()
 (build "(defmessage-handler A new ())"))
CLIPS> (send [a] build-new)

[MSGPSR3] System message-handlers may not be modified.
There are four primary message-handlers attached to the class USER which cannot be modified:
init, delete, create and print.

Example:

CLIPS> (defmessage-handler USER init ())

Preview from Notesale.co.uk

Page 386 of 428

 CLIPS Reference Manual

CLIPS Basic Programming Guide 379

Appendix I - Reserved Function Names

This appendix lists all of the functions provided by either standard CLIPS or various CLIPS
extensions. They should be considered reserved function names, and users should not create
user-defined functions with any of these names.

!=
*
**
+
-
/
<
<=
<>
=
>
>=
abs
acos
acosh
acot
acoth
acsc
acsch
active-duplicate-instance
active-initialize-instance
active-make-instance
active-message-duplicate-instance
active-message-modify-instance
active-modify-instance
agenda
and
any-instancep
apropos
asec
asech
asin
asinh
assert
assert-string
atan

atanh
batch
batch*
bind
bload
bload-instances
break
browse-classes
bsave
bsave-instances
build
call-next-handler
call-next-method
call-specific-method
class
class-abstractp
class-existp
class-reactivep
class-slots
class-subclasses
class-superclasses
clear
clear-focus-stack
close
conserve-mem
constructs-to-c
cos
cosh
cot
coth
create$
csc
csch
defclass-module
deffacts-module
deffunction-module

Preview from Notesale.co.uk

Page 405 of 428

Preview from Notesale.co.uk

Page 410 of 428

CLIPS Reference Manual

394 Index

bsave-instances 284
build .. 165, 303
C................................iii, 7, 9, 12, 15, 16, 21
call-next-handler82, 113, 114, 237
call-next-method 81, 82, 85, 224, 225
call-specific-method..............75, 82, 85, 225
carriage return..7
case sensitive ...7
check-syntax 167, 307
class........................ 8, 13, 78, 240, 276, 278

abstract..........................87, 92, 235, 276
concrete................................ 88, 92, 235
existence .. 227
immediate 92, 103
non-reactive 92
precedence ... 90
reactive 88, 92, 235
specific............................90, 92, 97, 113
system.. 87

ADDRESS 87
EXTERNAL-ADDRESS.............. 87
FACT-ADDRESS 87
FLOAT .. 87
INITIAL-OBJECT 87
INSTANCE.................................. 87
INSTANCE-ADDRESS............... 87
INSTANCE-NAME 87
INTEGER 87
LEXEME 87
MULTIFIELD.............................. 87
NUMBER 87
OBJECT......................... 87, 90, 278
PRIMITIVE 87
STRING....................................... 87
SYMBOL..................................... 87
USER...... 87, 90, 108, 119, 239, 283

user-defined 8, 282
user-defined 13

class function 223, 240
class-abstractp.. 229
class-existp .. 228
class-reactivep 230
class-slots .. 231

class-subclasses......................................230
class-superclasses...................................230
clear11, 25, 67, 118, 137, 139, 143, 250, 251
clear-focus-stack270
CLIPS .. iii
CLIPSFunctionCall 310, 311, 312
CLOS...75, 87
close...170
command 3, 151, 249
command prompt3
comment ..7, 10
Common Lisp Object System....................iv
condition ..15
conditional element15, 25, 27, 33, 63

and ... 27, 33, 52
exists ..33, 54
forall ..33, 56
logical ..33, 58
not..33, 53
or..33, 51
pattern ..27, 33

initial-fact 27, 52, 53
initial-object 27, 52, 53
literal ..34

test ... 30, 33, 49
conflict resolution strategy ...15, 28, 29, 251,
269

breadth ...29
complexity ...30
depth ..29
lex ..30
mea ..31
random...31
simplicity ...29

consequent ...15
conservation...235
conserve-mem................................ 250, 286
constant..3, 8
constraint 33, 40, 43

connective34, 40
field..33
literal..34
predicate................................. 34, 43, 49

Preview from Notesale.co.uk

Page 420 of 428

CLIPS Reference Manual

398 Index

direct.................................87, 88, 92, 96
initialization108, 115, 118, 239
manipulation 115
printing .. 110

instance-address ... 6, 8, 9, 49, 171, 240, 241,
329
instance-addressp 241
instance-existp 242
instance-list.. 14, 27
instance-name6, 8, 129, 240, 241
instance-namep 242
instance-name-to-symbol 241
instancep.. 241
instances .. 282
instance-set .. 128

action ... 132
class restriction................................. 128
distributed action.............................. 131
member .. 128
member variable....................... 129, 132
query...........................19, 130, 132, 329
query execution error 132
query functions................................. 133
template ... 128

integer.. 6, 8, 182
integerp.. 151
integration..5
Interfaces Guide..................................... v, 3
-l ..5
left-hand side ... 15
length... 196
length$..............................93, 105, 162, 196
less than ...7
lexemep ... 152
LHS ... 27
line feed...7
LISP ...iii, 15
list-defclasses... 276
list-deffacts .. 262
list-deffunctions 272
list-defgenerics....................................... 273
list-defglobals .. 271
list-definstances 282

list-defmessage-handlers280
list-defmethods....................77, 82, 274, 275
list-defmodules.......................................285
list-defrules ..263
list-deftemplates.....................................258
list-focus-stack269
list-watch-items......................................257
load.....................................5, 249, 250, 252
load* .. 249, 310
load-facts 260, 311
LoadFactsFromString.............................304
load-instances......................... 284, 309, 310
local ...260
log..186
log10..186
logical name................................... 168, 255

nil... 171, 173
stdin 169, 171, 172, 176, 177, 255
stdout169, 171, 173, 255
t................. 169, 171, 172, 173, 176, 177
wclips....................................... 169, 255
wdialog 169, 255
wdisplay................................... 169, 255
werror....................................... 169, 255
wtrace....................................... 169, 255
wwarning 169, 255

logical support...................58, 204, 205, 267
loop-for-count................82, 190, 192, 247, 314
lowcase ..166
make-instance 8, 47, 82, 92, 94, 96, 101,
108, 115, 117, 239, 284, 311
matches .. 63, 264
math functions................................ 178, 182
max..181
max-number-of-elements148
member$ 158, 303, 309
mem-requests ...286
mem-used...285
message.14, 16, 17, 18, 75, 87, 94, 103, 105,
112, 113, 114, 115, 116, 119

dispatch ..104
execution error 105, 114, 237
execution error114

Preview from Notesale.co.uk

Page 424 of 428

CLIPS Reference Manual

402 Index

symbol6, 7, 8, 240, 241
reserved.. 12

and ... 12
declare.. 12
exists .. 12
forall .. 12
logical .. 12
not.. 12
object ... 12
or.. 12
test ... 12

symbolp ... 152
symbol-to-instance-name 240
sym-cat .. 164
system.. 253
tab.. 7, 171, 309
tan.. 183
tanh.. 183
template ... 205
then portion.. 15
tilde ...7
time ... 196
timer .. 198
timer .. 304
top level ...3
toss .. 292
trigonometric math functions 182
TrueSymbol ... 302
truth maintenance..................................... 58
type function.................................. 223, 240
unconditional support............................... 58
undefclass .. 276
undeffacts .. 262
undeffunction... 273
undefgeneric .. 274
undefglobal 67, 271
undefinstances 282

undefmessage-handler280
undefmethod ..274
undefrule.. 139, 263
undeftemplate...259
unmake-instance 49, 239
unwatch.. 257, 310
upcase ..166
User’s Guide ..v, vii
user-functions...293
value ..9
variable ...5, 7, 9, 11, 14, 33, 34, 38, 53, 165,
187

global3, 14, 64, 67, 188, 251
vertical bar ...7
visible ..260
vtab.. 171, 309
watch 255, 257, 313
watch item

activations 28, 256
all ...257
compilations............................. 249, 256
deffunctions......................................256
facts.................................. 203, 204, 256
focus ..256
generic-functions..............................256
globals.. 67, 256
instances...257
message-handlers257
messages ..257
methods..256
rules ... 256, 268
slots..257
statistics.................................... 256, 268

while...................................82, 190, 247, 314
wildcard 33, 34, 36
wordp...152

Preview from Notesale.co.uk

Page 428 of 428

