CLIPS Reference Manual

3.1 Slot Default ValUesuvviiiiiiiiiiiice ettt e e e e e e e e e e e 22

3.2 Slot Default Constraints for Pattern-MatChingcccoeeveiiiiiiiiieiriiiiiiieeee e, 22

3.3 Slot Value Constraint AttrIDULESueeiieeeiiriiiiiiiieeeeeeeesiirreeeeeeeeeserrreeeeeeseesnnneenes 23

3.4 Implied DeftemMpPlatescoeiiiiiiiiiiiiiiieee e e e e e e e e e e eraae e e e e e s e e e nnaseaees 23
Section 4 - Deffacts Construct 25
Section 5 - Defrule Construct 27
5.1 Defining RUIESooiiiiiiiiiiiiiiiiieeee ettt e e e e e e et e e e e e e e e nnsaaaeeeeeeeeennnns 27
5.2 Basic Cycle Of Rule EXECULIONccccuviiiiiiiieiicieiiiceeee ettt e e e ee e e e e 28

5.3 Conflict ReSOIUtION Srat@@Iescueeeeiiiiiiiiieiiiiiiee et e e s 29
5.3.1 DEPLh SIrALEZY «eeeeeiiiiiiiiiiiee ettt e e e e e e 29

5.3.2 Breadth Srate@ycoooiuiiiiiiiiieie it 29

5.3.3 SIMPICILY SIFALEEY ...eeeeiiuiiiiieiiiiiee ettt et e e st e e s e e e 29

5.3.4 COMPIEXILY SIIALEZY ..evvvvrrieeeeeeieiiiiiieeeeeeeesseirrreeeeeeeesssaaarreeeaeeesessssessreeeaeesesannes 30

RICTR B 2D QN i ¢ 11 OO PP PRSPPI 30

5.3.0 MEA SHrALEZY ..eeeiiuiiiiieiiiitee ettt ettt e ettt e st e e st ee st e e e e enneee 31

5.3.77 Random STrate@ycccevvveiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeespa e oo e \(. 31

5.4 LHS SYNEAX c..oeevivieiieeeeeeseeeeeeee e R GO 33
5.4.1 Pattern Conditional Element Sa e ST TR 33

ii

5.4.1.1 Literal Constraints............ ﬁ Qte .. 34
5.4.12 Wildcards Single am 2% ... 36
5 4 13 Varlab]e] s% ultifi 1 Ac ... 38

e onstra1 ... 40

edlcate te .. 43

4 1 6 Return Vallle CONSIIAINESuvvviiiieeeieiiiiiiiiieeeeeeeesiiiireeeeeeeessiaarrreeeeesesnnnns 45
5.4.1 .7 Pattern-Matching with Object Patternscccccceeeeeeeiciiiieiieee e, 46
5.4.1.8 Pattern-AddIreSSES ooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 49
5.4.2 Test Conditional EISMENt...........ccuuviiiiiiiiiiiiiiiiieee et ee e e e e e 49
5.4.3 Or Conditional EICMENtcoeeiiiiiiiiiiiieeeeiiiieeeee e e e e e ee e e e e e e 51
5.4.4 And Conditional EISMENt..........cccuuviiiiiiiiiiiiiiiiiieeee et e e e e e e 52
5.4.5 Not Conditional EIEmMeNtcccuuiiiiiiiiiiiiiiiiiieeee e e e e e e 53
5.4.6 Exists Conditional EIEMent...............ceeiiiiiiiiiiiiiiiiiiee e ee e e e e 54
5.4.7 Forall Conditional EIEmenteuiiiiiiiiiiiiiiiiiiiiee e ee e e e e 56
5.4.8 Logical Conditional EIEmentccceeviiiiiiiiiiiiiieeieiiiiiceee e eeeeiieeeeee e e e ee e 58
5.4.9 Automatic Addition and Reordering of LHS CEs........cccccoiiiiiiiiiiiiiiiiiecee 61
5.4.9.1 Rules Without Any LHS Pattern CES........ccooooiiiiiiiiiiiiiiiiiiieeceeeeee 61
5.4.9.2 Test and Not CEs as the First CE of an And CEcccccooiviiiiiiiiieneeenennns 61
5.4.9.3 Test CEs Following NOt CES..........ceiiiiiiiiiiiiiiieeiiieee et 62
5.4.9.4 Or CEs FOlIoWING NOt CEScccoiuiiiiiiiiiiiiiiiiiieee ettt 63
5.4.9.5 Notes About Pattern Addition and Reordering...........ccceeevveeiiniiieiinniiiecenn. 63
5.4.10 Declaring Rule Propertiescccuuuriiiieeeiiiiiiiiieeeee e eeeiiireeee e e e e e eeevereeee e e e e e 63
5.4.10.1 The Salience Rule Propertyccccoeeeeiiiiiiiieeiieiiiiiieeeee e e e e 64

Table of Contents

CLIPS Reference Manual

9.4 Defmessage-handler CONSIIUCEeeiiiiiiiiiiiiiiiee ettt e e 103
9.4.1 Message-handler Parametersooouuiiiiiiiiiiiiiiiiiee et 105
9.4.1.1 Active Instance Parameter..............ccceoiiiiiiiiiiiiiiiiiiiicce e 105

9.4.2 Message-handler ACHIONScooouueieiiiiiiieeiiiiiee ettt ettt e e s e 106
0.4.3 DIACTIIONSeetteeeeeeieiitt ettt ettt e e e e ettt e e e e s e ettt e e e e e e e et eeeeeeeeanaaas 108
9.4 .4 Predefined System Message-handlerscccooviiiiiiiiiiiiiniiiicceeeeees 108
9.4.4.1 Instance INTtAliZationeeiiiiiiiiiiiiiiie e 108
0.4.4.2 InsStance DEeIetionccooiiiiiiiiiiiiiieiiiee e 109

0.4.4.3 InStance DisPlaycccuueieeiiiiiiiiiiiiiee e 110
9.4.4.4 Directly Modifying an INStancecceeeeiiiiiieiiiniiieie e 110

9.4.4.5 Modifying an Instance using MesSagescceeeerrurieieriiiieeenniiieee e 111
9.4.4.6 Directly Duplicating an INStanceccceeeviieeiiiniiieienniiieee e 111
9.4.4.7 Duplicating an Instance using Messages.........cc.ueeeerurieierniiieienniiieee e 112
0.4.4.8 INStANCE CTEAtION ..eeiuuiiiiiiiiiiiie et ee ettt e e et e e e 112

0.5 Message DISPAtCh....ccoouuiiiiiiiiiiie i 112
9.5.1 Applicability of Message-handlerscccueeiiiiiiiiiiiiiiiiiiieeeee e 113
9.5.2 Message-handler Precedencecceeeiniiieiiiiiiiiiiniiieeeeeeee e, \(........ 113
9.5.3 Shadowed Message-handlersccccovviiiiiiiiinininnn, 0 ‘u 114
9.5.4 Message Execution Errors..........ccoecveeeneerenieenne. \e i iC 114
9.5.5 Message Return Value eg‘a .. 115
9.6 Manipulating Instances..................... N O ... 115

9.6.1 Creati I tanceg yo. N\ -4 N 2% 115
reating Ins ancz&&)gr A

uct..... ... O ... 117

9.6.1.1 De
9. éésyt x1st1n .. 118

? ading SIots... et dOMNDD. oo 120
0.4 SEUNG SIOLS....uuiiiiiiiiieee ettt e e e eeerr e e e e e e e et eeeeeeeessssataareeeeeeeeennnnnnenees 120
0.6.5 Deleting INSTANCES......ceeiiiuiiiieiiiiiiee ettt e et e e st e e s ebeeeee e 121
9.6.6 Delayed Pattern-Matching When Manipulating Instancescccoceeeeiniiieeens 121
9.6.7 Modifying INSLANCESceoiuvviiiiiiiiiieiiiiiee ettt e e 122
9.6.7.1 Directly Modifying an Instance with Delayed Pattern-Matching................. 122
9.6.7.2 Directly Modifying an Instance with Immediate Pattern-Matching 123
9.6.7.3 Modifying an Instance using Messages with Delayed Pattern-Matching.....123
9.6.7.4 Modifying an Instance using Messages with Immediate Pattern-Matching . 124
9.6.8 Duplicating INStANCESvveeeiiiiiiieiiiiiiee ettt et e e 124
9.6.8.1 Directly Duplicating an Instance with Delayed Pattern-Matching............... 124
9.6.8.2 Directly Duplicating an Instance with Immediate Pattern-Matching 125

9.6.8.3 Duplicating an Instance using Messages with Delayed Pattern-Matching ... 125
9.6.8.4 Duplicating an Instance using Messages with Immediate Pattern-Matching 126

9.7 Instance-set Queries and Distributed ACtIONS...........uuvuuuueureiriiiiiiiieiiieeeieeeeeeeeeeaeee..———.. 127
9.7.1 Instance-set DefinitiOnuuueeiiiiiiiiiiiiieee e e 128
9.7.2 Instance-8et DetermINatioN.........cevveeiiiiieiiiiiieeeeeeieeeeeeiieeeeeeee e et eeeeeeeererrannes 129
0.7.3 QUETY DefiNItiONuiiiiiiiiiieiiiiiee ettt e e et ee e 130
9.7.4 Distributed Action Definition..........cooiviviiiiiieiiiiiiiiiieeeeeeeeeeeeeee e 131

iv Table of Contents

CLIPS Reference Manual

9.7.5 Scope in Instance-set Query FUNCtIONS...........eeiiiiiiiiiiiiiiiiiiiiiceeieeee e 132
9.7.6 Errors during Instance-set Query FUNCtionscccoevuiieiiiniiiiiiiniiieeeeiieeeas 132
9.7.7 Halting and Returning Values from Query Functions.............cccccevviieiiinienenn, 133
9.7.8 Instance-set QUery FUNCHIONSccooiuiiiiiiiiiiiiiiiie e 133
9.7.8.1 Testing if Any Instance-set Satisfies @ QUETYcccceeeriiiiiiiiniiieeenniieeen. 133
9.7.8.2 Determining the First Instance-set Satisfying a Querycccoocueeeernnneen. 133
9.7.8.3 Determining All Instance-sets Satisfying a QUery........cccocccuveeerniiieeennnneeen. 134
9.7.8.4 Executing an Action for the First Instance-set Satisfying a Query............... 134
9.7.8.5 Executing an Action for All Instance-sets Satisfying a Query..................... 135
9.7.8.6 Executing a Delayed Action for All Instance-sets ~ Satisfying a Query135
Section 10 - Defmodule Construct 137
10.1 Defining MOAUIEScciiiiiiiiiiiieee ettt e e e e e et e e e e e e e e enaraneeaeeens 137
10.2 Specifying a Construct’s Module............c.uuvviiiiiiiiiiiiiiiiieeee e 138
10.3 Specifying MOAUIEScooiiiiiiiiiiiiee et st 139
10.4 Importing and EXporting CONSIIUCESeeiiiiiiiieeiiiiieee et 139
10.4.1 EXpOrting CONSIIUCESvvvvvieeeeeeeriiiiiiieeeeeeeeenseerrreeeeeesessssnssseeeeesesesssRusgoneeeaeens 140
10.4.2 Importing CONSLIUCESvvvvieeeeereerriiiiiieeeeeeeeerriiiirreeeeeeeesnnneerogiuiees Koo RS D eeeeenn 141
10.5 Importing and Exporting Facts and Instances.................] Ve W8 WA 4 s 141
10.5.1 Specifying Instance-Names................. . Sa et 142
10.6 Modules and Rule Execution........... N G‘e ... 142

Section 11 - Constralnt l‘& eQm o 145
7 0 145

11 1 Type Aﬁg& ...
nstant A ge .. 146

11 Range ATIDULE ... e e 147
11.4 Cardinality AtIDULEceeiiiiiiiiiieee et e et e e e e e e et e e e e e e e eenansraneeeeeens 147
11.5 Deriving a Default Value From Constraintsccccvvveeeeeeeeiiiciiiieeeeeeeeesiiveeeeeeennn 148
11.6 Constraint Violation EXamPplescccoiiiiiiiiiiiiiiiiiiceiiceeeee e 149
Section 12 - Actions And Functions 151
12.1 Predicate FUNCHONScoiiiiiiiiiiiiiiiie ettt e 151
12.1.1 Testing FOr NUMDETSccoiiiiiiiiiiiiiiiieee e e eaaeeeee e 151
12.1.2 Testing FOr FIOAtSuviiiiiieiiieiiiiiieeee ettt e e e e e areeeea e 151
12.1.3 Testing FOr INtEZETSuuvviiiiieiiieiiiiiieee e e ettt e e e e e et e e e e e e e e aaareaeaeees 151
12.1.4 Testing For Strings Or SymDbOISooiiiiiiiiiiiiiiiiieeee e 152
12.1.5 Testing FOr StrNES ..uuuviiiiiiieeiieiiiiiceee ettt e e e e e e e e e e e e e s enasrreeeeaeens 152
12.1.6 Testing FOr SYMDOISuiiiiiiiiiiiiiiieeee e e e e e eee e 152
12.1.7 Testing For Even NUMDETScccvviiiiiiiiiiieieee e 152
12.1.8 Testing FOr Odd NUMDETS........cccouviiiiiiieeee et e e e e eea e 152
12.1.9 Testing For Multifield Valuesccccoiiiiiiiiiiiiiiiiiicecc e 153
12.1.10 Testing For External-Addressesuiiiiiiirriiiiiiiiieee e eeeiveeeeeae s 153
12.1.11 Comparing for EQUAlIty.........cooeeiiiiiiiiiieeeeeeiiieeee et eeeveeee e 153

CLIPS Basic Programming Guide v

CLIPS Reference Manual

CLIPS> (defglobal ?*x* = 3)
CLIPS> ?7*x*

3

CLIPS> red

red

CLIPS> (bind ?a 5)

5

CLIPS> (+ ?a 3)

8

CLIPS> (reset)

CLIPS> ?a

[EVALUATN1] Variable a is unbound
FALSE

CLIPS>

The previous example first called the addition function adding the numbers 3 and 4 to yield the
result 7. A global variable ?7*x* was then defined and given the value 3. The variable 7*x* was
then entered at the prompt and its value of 3 was returned. Finally the constant symbol red was
entered and was returned (since a constant evaluates to itself).

2.1.2 Automated Command Entry and Loading O u\k

Some operating systems allow additional arguments fo al\@) a program when it begins
execution. When the CLIPS executable is Stﬂn an oparating system, CLIPS can be
f man

made to automatically execu ﬁﬁ‘b z ly from a file or to load
constructs from a flle T % ine s ti IPS and automatically reading
commands oéqﬂ cts from @ llows

Synta? (P a‘g

<option> ::= -f <filename> |
-f2 <filename> |
-1 <filename>

clips <option>*

For the -f option, <filename> is a file that contains CLIPS commands. If the exit command is
included in the file, CLIPS will halt and the user is returned to the operating system after
executing the commands in the file. If an exit command is not in the file, CLIPS will enter in its
interactive state after executing the commands in the file. Commands in the file should be
entered exactly as they would be interactively (i.e. opening and closing parentheses must be
included and a carriage return must be at the end of the command). The -f command line option
is equivalent to interactively entering a batch command as the first command to the CLIPS
prompt.

The -f2 option is similar to the -f option, but is equivalent to interactively entering a batch*

command. The commands stored in <filename> are immediately executed, but the commands
and their return values are not displayed as they would be for a batch command.

4 Section 2 - CLIPS Overview

CLIPS Reference Manual

<lexeme> ::= <symbol> | <string>
A complete BNF listing for CLIPS constructs along with some commonly used replacements for
non-terminal symbols are listed in appendix I.
2.3 BASIC PROGRAMMING ELEMENTS
CLIPS provides three basic elements for writing programs: primitive data types, functions for
manipulating data, and constructs for adding to a knowledge base.
2.3.1 Data Types

CLIPS provides eight primitive data types for representing information. These types are float,
integer, symbol, string, external-address, fact-address, instance-name and instance-address.
Numeric information can be represented using floats and integers. Symbolic information can be

represented using symbols and strings. u

.
A number consists only of digits (0-9), a decimal point (.), 4 s @)ngand, optionally, an (e)
for exponential notation with its corresponding S /@ is either stored as a float or an
integer. Any number consisting of a Q

n follo 6‘24‘ only digits is stored as an

integer (represented 1nterna11)§t¥ s aC 10 other numbers are stored as

floats (represented LIPS as ﬁ 1sron float). The number of significant
digits W e ation. Roundoff errors also may occur, again
depending bn the machrne 1 10n As with any computer language, care should be taken

when comparing floating- pomt values to each other or comparing integers to floating-point
values. Some examples of integers are

237 15 +12 -32

Some examples of floats are

237e3 15.09 +12.0 -32.3e-7

Specifically, integers use the following format:
<integer> ::= [+ | -] <digit>+
<digit> ::=@ 1112131415161 718129
Floating point numbers use the following format:
<float> ::= <integer> <exponent> |
<integer> . [exponent]

6 Section 2 - CLIPS Overview

CLIPS Reference Manual

. <unsigned integer> [exponent]
<integer> . <unsigned integer> [exponent]
<unsigned-integer> ::= <digit>+

<exponent> ::= e | E <integer>

A sequence of characters which does not exactly follow the format of a number is treated as a
symbol (see the next paragraph).

A symbol in CLIPS is any sequence of characters that starts with any printable ASCII character
and is followed by zero or more printable ASCII characters. When a delimiter is found, the
symbol is ended. The following characters act as delimiters: any non-printable ASCII character
(including spaces, tabs, carriage returns, and line feeds), a double quote, opening and closing
parentheses “(” and *)”, an ampersand “&”, a vertical bar “I”, a less than “<”, and a tilde “~”. A
semicolon “;” starts a CLIPS comment (see section 2.3.3) and also acts as a delimiter. Delimiters
may not be 1ncluded in symbols with the exception of the “<* character which mag pe the first
character in a symbol. In addition, a symbol may not begin with elther th “‘7”@ ter or the
“$?” sequence of characters (although a symbol may contam the\ea "These characters
are reserved for variables (which are discussed later LIPS is case sensitive (i.e.
uppercase letters will match only uppercasﬁ te that bers are a special case of
ol, bu

symbols (i.e. they satlsfy the dgfi he&r ti€aked as a different data type).
Some simple examples c %

23
@ { 6\’ \ﬁello P a@ I bad_value

127A 456-93-039 @+=-% 2each

A string is a set of characters that starts with a double quote (") and is followed by zero or more
printable characters. A string ends with double quotes. Double quotes may be embedded within a
string by placing a backslash (\) in front of the character. A backslash may be embedded by
placing two consecutive backslash characters in the string. Some examples are

"foo" "a and b" "1 number" "a\"quote"

Note that the string “abcd" is not the same as the symbol abcd. They both contain the same
characters, but are of different types. The same holds true for the instance name [abcd].

An external-address is the address of an external data structure returned by a function (written
in a language such as C or Ada) that has been integrated with CLIPS. This data type can only be
created by calling a function (i.e. it is not possible to specify an external-address by typing the
value). In the basic version of CLIPS (which has no user defined external functions), it is not
possible to create this data type. External-addresses are discussed in further detail in the

CLIPS Basic Programming Guide 7

CLIPS Reference Manual

Function calls in CLIPS use a prefix notation — the arguments to a function always appear after
the function name. Function calls begin with a left parenthesis, followed by the name of the
function, then the arguments to the function follow (each argument separated by one or more
spaces). Arguments to a function can be primitive data types, variables, or another function call.
The function call is then closed with a right parenthesis. Some examples of function calls using
the addition (+) and multiplication (*) functions are shown following.

(+345)

(*560)

+3C*89 4
*8(+3(*234)9 (*34)

While a function refers to a piece of executable code identified by a specific name, an
expression refers to a function which has its arguments specified (which may or may not be
functions calls as well). Thus the previous examples are expressions which make calls to the *
and + functions.

2.3.3 Constructs
Several defining constructs appear in CLIPS: defmodule quacts deftemplate,
defglobal, deffunction, defclass, deflnsta c e- handler defgeneric, and

defmethod. All constructs in CLIPS are pare The construct opens with a
left parenthesis and closes wi a enthes1s %truct differs from calling a
function primarily 4 1 xnia y a fu es the CLIPS environment unchanged
(with eptlons suc g or clearmg the environment or opening a file).
Definmo struct, howe\P algculy intended to alter the CLIPS environment by adding
to the CLIPS knowledge base. Unlike function calls, constructs never have a return value.

As with any programming language, it is highly beneficial to comment CLIPS code. All
constructs (with the exception of defglobal) allow a comment directly following the construct
name. Comments also can be placed within CLIPS code by using a semicolon (;). Everything
from the semicolon until the next return character will be ignored by CLIPS. If the semicolon is
the first character in the line, the entire line will be treated as a comment. Examples of
commented code will be provided throughout the reference manual. Semicolon commented text
is not saved by CLIPS when loading constructs (however, the optional comment string within a
construct is saved).

2.4 DATA ABSTRACTION

There are three primary formats for representing information in CLIPS: facts, objects and global
variables.

10 Section 2 - CLIPS Overview

CLIPS Reference Manual

statement. In contrast, rules act like WHENEVER-THEN statements. The inference engine
always keeps track of rules which have their conditions satisfied and thus rules can immediately
be executed when they are applicable. In this sense, rules are similar to exception handlers found
in languages such as Ada.

2.5.2 Procedural Knowledge

CLIPS also supports a procedural paradigm for representing knowledge like that of more
conventional languages, such as Pascal and C. Deffunctions and generic functions allow the user
to define new executable elements to CLIPS that perform a useful side-effect or return a useful
value. These new functions can be called just like the built-in functions of CLIPS.
Message-handlers allow the user to define the behavior of objects by specifying their response to
messages. Deffunctions, generic functions and message-handlers are all procedural pieces of
code specified by the user that CLIPS executes interpretively at the appropriate times.
Defmodules allow a knowledge base to be partitioned.

2.5.2.1 Deffunctions O ‘\)\4

Deffunctions allow you to define new functions i %w a&g In previous versions of
CLIPS, the only way to have user—deﬁneﬂ t as to te them in some external
language, such as C or Ada, g le and r nkh& 1th the new functions. The
body of a deffunctlon i r?'g pre551 S of a rule that are executed in
order by CLI ffunctio e return value of a deffunction is the value of
the la?{r 10 evaluate @{‘gbgeffunctlon Calling a deffunction is identical to calling

any othtr function in CLIP Detfunctions are covered comprehensively in Section 7.

2.5.2.2 Generic Functions

Generic functions are similar to deffunctions in that they can be used to define new procedural
code directly in CLIPS, and they can be called like any other function. However, generic
functions are much more powerful because they can be overloaded. A generic function will do
different things depending on the types (or classes) and number of its arguments. Generic
functions are comprised of multiple components called methods, where each method handles
different cases of arguments for the generic function. For example, you might overload the “+”
operator to do string concatenation when it is passed strings as arguments. However, the “+”
operator will still perform arithmetic addition when passed numbers. There are two methods in
this example: an explicit one for strings defined by the user and an implicit one which is the
standard CLIPS arithmetic addition operator. The return value of a generic function is the
evaluation of the last expression in the method executed. Generic functions are covered
comprehensively in Section 8.

16 Section 2 - CLIPS Overview

CLIPS Reference Manual

numbers as arguments, or you can define message-handlers for the NUMBER class which allow
you to do it in the purely OOP fashion.

All programming elements which are not objects must be manipulated in a non-OOP utilizing
function tailored for those programming elements. For example, to print a rule, you call the
function ppdefrule; you do not send a message “print” to a rule, since it is not an object.

2.6.2 Primary OOP Features

There are five primary characteristics that an OOP system must possess: abstraction,
encapsulation, inheritance, polymorphism and dynamic binding. An abstraction is a higher
level, more intuitive representation for a complex concept. Encapsulation is the process whereby
the implementation details of an object are masked by a well-defined external interface. Classes
may be described in terms of other classes by use of inheritance. Polymorphism is the ability of
different objects to respond to the same message in a specialized manner. Dynamic binding is the
ability to defer the selection of which specific message-handlers will be called for a message

until run-time. O u\‘

.

The definitions of new classes allows the abstraction of n%bg_xges m COOL. The slots and
message-handlers of these classes describe thﬁm@ avior of a new group of objects.

@m message- AyZﬁe manipulation of instances of

COOL supports encapsulati n-g
user-defined clas \T‘i \l}i ce cannot I message for which it does not have a

defme??@e P ag

COOL allows the user to specify some or all of the properties and behavior of a class in terms of
one or more unrelated superclasses. This process is called multiple inheritance. COOL uses the
existing hierarchy of classes to establish a linear ordering called the class precedence list for a
new class. Objects which are instances of this new class can inherit properties (slots) and
behavior (message-handlers) from each of the classes in the class precedence list. The word
precedence implies that properties and behavior of a class first in the list override conflicting
definitions of a class later in the list.

One COOL object can respond to a message in a completely different way than another object;
this is polymorphism. This is accomplished by attaching message-handlers with differing actions
but which have the same name to the classes of these two objects respectively.

Dynamic binding is supported in that an object reference (see section 2.3.1) in a send function

call is not bound until run-time. For example, an instance-name or variable might refer to one
object at the time a message is sent and another at a later time.

18 Section 2 - CLIPS Overview

CLIPS Reference Manual

conflict resolution strategies). The lex and mea strategies are provided to help in converting
OPSS5 programs to CLIPS.

The random strategy is useful for testing. Because this strategy randomly orders activations
having the same salience, it is useful in detecting whether the execution order of rules with the
same salience effects the program behavior. Before running a program with the random strategy,
first seed the random number generator using the seed function. The same seed value can be
subsequently be used if it is necessary to replicate the results of the program run.

54 LHS SYNTAX

This section describes the syntax used on the LHS of a rule. The LHS of a CLIPS rule is made
up of a series of conditional elements (CEs) that must be satisfied for the rule to be placed on the
agenda. There are eight types of conditional elements: pattern CEs, test CEs, and CEs, or CEs,
not CEs, exists CEs, forall CEs, and logical CEs. The pattern CE is the most basic and
commonly used conditional element. Pattern CEs contain constraints which are used to

determine if any pattern entities (facts or instances) satisfy the pattern. The tegt is used to
evaluate expressions as part of the pattern-matching process. Th o specify that
an entire group of CEs must all be satisfied. The or CE Xés‘pemfy that only one of a

group of CEs must be satisfied. The not CE_is u@’ that a CE must not be satisfied.
The exists CE is used to test for the 0 c st o atch for a set of CEs. The
forall CE is used to test that s satjsfi rtlal match of a specified CE.

\lﬁv ertlons 0 e creation of instances on the RHS of a

Finally, the log
rule tc? ndeﬁpg-g ities matchmg patterns on the LHS of a rule (truth

maintefan
Syntax
<conditional-element> ::= <pattern-CE> |

<assigned-pattern-CE> |
<not-CE> |
<and-CE> |
<or-CE> |
<logical-CE> |
<test-CE> |

<exists-CE> |
<forall-CE>

5.4.1 Pattern Conditional Element

Pattern conditional elements consist of a collection of field constraints, wildcards, and
variables which are used to constrain the set of facts or instances which match the pattern CE. A
pattern CE is satisfied by each and every pattern entity that satisfies its constraints. Field
constraints are a set of constraints that are used to test a single field or slot of a pattern entity. A
field constraint may consist of only a single literal constraint, however, it may also consist of

CLIPS Basic Programming Guide 33

CLIPS Reference Manual

=>
(printout t "The system has a fault." crlf))

(defrule system-fault
(error-status unknown)
(valve broken)
=>
(printout t "The system has a fault." crlf))

(defrule system-fault
(error-status unknown)
(temp high)
=>
(printout t "The system has a fault." crlf))

5.4.4 And Conditional Element

CLIPS assumes that all rules have an implicit and conditional element surrounding the
conditional elements on the LHS. This means that all conditional elements on the LHS must be
satisfied before the rule can be activated. An explicit and conditional element Kewded to
allow the mixing of and CEs and or CEs. This allows other types of cg d@ & nts to be
grouped together within or and not CEs. The and CE is satis ﬁ" ¢ CEs inside of the

explicit and CE are satisfied. If all other LHS condlt‘g@ rule will be activated. Any
number of conditional elements may be place nd)28

Syntax £¥O ol
<and-CE> : @\Nﬂdltlonal emq %
ExamEie (e P agé

(defrule system-flow

(error-status confirmed)

Cor (Cand (temp high)
(valve closed))

(and (temp low)

(valve open)))

=>

(printout t "The system is having a flow problem." crlf))

An and CE that has a test or not CE as its first CE has the pattern (initial-fact) or (initial-object)
added as the first CE. Note that the LHS of any rule is enclosed within an implied and CE. For
example, the following rule

(defrule nothing-to-schedule
(not (schedule 7))
=>
(printout t "Nothing to schedule." crlf))

is converted to
(defrule nothing-to-schedule

52 Section 5 - Defrule Construct

CLIPS Reference Manual

(and (initial-fact)
(not (schedule ?)))
=>
(printout t "Nothing to schedule." crlf))

5.4.5 Not Conditional Element

Sometimes the lack of information is meaningful; i.e., one wishes to fire a rule if a pattern entity
or other CE does not exist. The not conditional element provides this capability. The not CE is
satisfied only if the conditional element contained within it is not satisfied. As with other
conditional elements, any number of additional CEs may be on the LHS of the rule and field con-
straints may be used within the negated pattern.

Syntax

<not-CE> ::= (not <conditional-element>)

Only one CE may be negated at a time. Multiple patterns may be negated by using multiple not
CEs. Care must be taken when combining not CEs with or and and CEs; the Its are not
always obvious! The same holds true for variable bindings within a nt@ lﬁ ly bound
variables may be used freely inside of a not CE. However g\ S d for the first time

within a not CE can be used only in that pattern.
Examples 28
(defrule high- ﬂo\|qt "(O ’(g O" A

(temp hlg
(printout t "Recommend closing of valve due to high temp

?&%rror statu s@r@g@

n

(defrule check-valve

(check-status ?valve)

(not (valve-broken ?valve))

=>

(printout t "Device " ?valve " is OK" crlf))

(defrule double-pattern

(data red)
(not (data red ?x ?x))
=>

(printout t "No patterns with red green green!" crlf))

A not CE that contains a single test CE is converted such that the test CE is contained within an
and CE and is preceded by the (initial-fact) or (initial-object) pattern. For example, the following
conditional element

(not (test (> ?time-1 ?time-2)))

CLIPS Basic Programming Guide 53

CLIPS Reference Manual

5.4.8 Logical Conditional Element

The logical conditional element provides a truth maintenance capability for pattern entities
(facts or instances) created by rules which use the logical CE. A pattern entity created on the
RHS (or as a result of actions performed from the RHS) can be made logically dependent upon
the pattern entities which matched the patterns enclosed with the logical CE on the LHS of the
rule. The pattern entities matching the LHS logical patterns provide logical support to the facts
and instance created by the RHS of the rule. A pattern entity can be logically supported by more
than one group of pattern entities from the same or different rules. If any one supporting pattern
entities is removed from a group of supporting pattern entities (and there are no other supporting
groups), then the pattern entity is removed.

If a pattern entity is created without logical support (e.g., from a deffacts, definstaces, as a
top-level command, or from a rule without any logical patterns), then the pattern entity has
unconditional support. Unconditionally supporting a pattern entity removes all logical support
(without causing the removal of the pattern entity). In addition, further logical support for an
unconditionally supported pattern entity is ignored. Removing a rule that genegraged logical
support for a pattern entity, removes the logical support generated by thé ﬂ does not
cause the removal of the pattern entity if no logical support remal\%

Syntax

<logical-CE> ::= (logical <conm & ent>+)A28
S 'SX

The logical CE % WI‘I;S together ex plicit and CE does. It may be used in
conjuret h\i‘x wever, only the first N patterns of a rule can have
the log§cal apphed to thev mple the following rule is legal

(defrule ok
(logical (a))
(logical (b))
©
=>

(assert (d)))

whereas the following rules are illegal

(defrule not-ok-1
(logical (a))
(b
(logical (c))
=>

(assert (d)))

(defrule not-ok-2
(a)
(logical (b))
(logical (c))

=>

58 Section 5 - Defrule Construct

CLIPS Reference Manual

(assert (d)))

(defrule not-ok-3
(or (@)
(logical (b))
(logical (c))
=>

(assert (d)))

Example
Given the following rules,

CLIPS> (clear)

CLIPS>

(defrule rulel
(logical (a))
(logical (b))
©
=>

CLIggssert (gd> (h)X)
>
cepre e o. WK
(logical (e)) \e ‘C
& s
re
(assert (g) () NO
CLIPS> _‘(Om O_‘
the followm%ﬂ*@ﬁ strate h@% %bendencies work.

CL S> (watch Facts)

CLIPS> (watch activations)

CLIPS. (watch rules)

CLIPS> (assert (a) (b) (o) (d) (e) ()

==> f-0 (a)

==> f-1 (b)

==> f-2 ()

==> Activation 0 rulel: f-0,f-1,f-2
==> f-3 D)

==> f-4 (e)

==> f-5 6D

==> Activation 0 rule2: f-3,f-3,f-5
<Fact-5>

CLIPS> (run)

FIRE 1 rule2: f-3,f-4,f-5 ; 1st rule adds logical support
=> -6 (@

=> -7 h

FIRE 2 rulel: f-0,f-1,f-2 ; 2nd rule adds further support
CLIPS> (retract 1)

<== -0 () ; Removes 1st support for (g) and (h)
CLIPS> (assert (h)) ; (h) is unconditionally supported
FALSE

CLIPS> (retract 3)

<== f-3 (D ; Removes 2nd support for (g)

CLIPS Basic Programming Guide 59

CLIPS Reference Manual

(test (> 80 (startup-value)))
(object (is-a MACHINE))
=>)

(defrule example-4
(machine ?x)
(not (Cand (not (part ?x ?y))
(inventoried ?7x)))

=>)
would be changed as follows.

(defrule example-2
(initial-fact)
(test (> 80 (startup-value)))
=>)

(defrule example-3
(object (is-a INITIAL-OBJECT) (name [initial-object]))
(test (> 80 (startup-value)))
(object (is-a MACHINE))

=) \)\4

(defrule example-4

(machine ?x) \e _CO '
(not (and (initial-fact) Sa-
(not (part ?x ?y)) NO‘G

(inventoried ?7x))
30
‘\le\N \\
5 .4.9.?¥ a‘}ko lowing@ﬁ@e

Test CEs that immediately follow a not CE are automatically moved by CLIPS behind the first
pattern CE that precedes the not CE. For example, the following rule

(defrule example
(a ?x)
(not (b ?x))
(test (> ?x 5))
=>)

would be changed as follows.

(defrule example
(a ?x)
(test (> ?x 5))
(not (b ?x))
=>)

62 Section 5 - Defrule Construct

CLIPS Reference Manual

Section 6 - Defglobal Construct

With the defglobal construct, global variables can be defined, set, and accessed within the
CLIPS environment. Global variables can be accessed as part of the pattern-matching process,
but changing them does not invoke the pattern-matching process. The bind function is used to
set the value of global variables. Global variables are reset to their original value when the reset
command is performed or when bind is called for the global with no values. This behavior can
be changed using the set-reset-globals function. Global variables can be removed by using the
clear command or the undefglobal command. If the globals item is being watched (see section
13.2), then an informational message will be displayed each time the value of a global variable is
changed.

Syntax
(defglobal [<defmodule-name>] <global-assignment>*)

<global-assignment> ::= <global-variable> = <expression>

?7*<symbol>* K

There may be multiple defglobal constructs and any number of 1 1 G;Qes may be defined
in each defglobal statement. The optional <defmodulg- es the module in which the
defglobals will be defined. If none is speaﬁﬂ mll b aced in the current module.
If a variable was defined in a previ onstr A 111 be replaced by the value
found in the new defgl & ﬁ ered when defining a defglobal

or
construct, a @\r*@r e def1n1t10 ggrr@ before the error was encountered will still
remal@ ¥

Commands that operate on defglobals such as ppdefglobal and undefglobal expect the symbolic
name of the global without the astericks (e.g. use the symbol max when you want to refer to the
global variable ?7*max*).

<global-variable>

Global variables may be used anyplace that a local variable could be used (with two exceptions).
Global variables may not be used as a parameter variable for a deffunction, defmethod, or
message-handler. Global variables may not be used in the same way that a local variable is used
on the LHS of a rule to bind a value. Therefore, the following rule is illegal

(defrule example
(fact ?7*x*)
=>)

The following rule, however, is legal.

(defrule example
(fact ?y&:(> ?y 7*x*))
=>)

CLIPS Basic Programming Guide 67

CLIPS Reference Manual

(defrule collect-factoids
(collect-factoids)
=>
(bind ?data (create$))
(do-for-all-facts ((?f factoid)) TRUE
(bind ?data (create$?data ?f:implied)))
(assert (collection ?data)))

With this approach, the collection fact is available for pattern-matching with the added benefit
that there are no intermediate results generated in creating the fact. Typically if other rules are
waiting for the finished result of the collection, they would need to have lower salience so that
they aren’t fired for the intermediate results:

(defrule print-factoids
(declare (salience -10))
(collection $?data)
=>
(printout t "The collected data is " ?data crlf))

If the factoid facts are collected by a single rule firing, then the salience aration is

unnecessary. O .
Appropriate Uses Sa\e ‘C

The primary use of global variables (in conjﬂ iltrrules) jsg® making a program easier to

maintain. It is a rare situatio \?mea variable g rAy% order to solve a problem.
"_& jabiCs is defi e va

One appropriate usg of WI % S ues shared among multiple rules:

c
c@;'@@\.lh\lgh-pri‘ptag@

(defrule rule-1
(declare (salience ?*high-priority*))

=>)

(defrule rule-2
(declare (salience ?*high-priority*))

=>)

Another use is defining constants used on the LHS or RHS of a rule:

(defglobal ?*week-days* =
(create$ monday tuesday wednesday thursday friday saturday sunday))

(defrule invalid-day
(day ?day&:(not (member$?day ?*week-days*)))
=>
(printout t ?day " is invalid" crlf))

(defrule valid-day
(day ?day&:(member$?day ?*week-days*))
=>
(printout t ?day " is valid" crlf))

70 Section 6 - Defglobal Construct

CLIPS Reference Manual

A third use is passing information to a rule when it is desirable not to trigger pattern-matching. In
the following rule, a global variable is used to determine whether additional debugging
information is printed:

(defglobal ?*debug-print* = nil)

(defrule rule-debug
?f <- (info ?info)
=>
(retract ?f)
(printout ?*debug-print* "Retracting info " ?info crlf))

If 7*debug-print* is set to nil, then the printout statement will not display any information. If the
7*debug-print* is set to t, then debugging information will be sent to the screen. Because
7*debug-print* is a global, it can be changed interactively without causing rules to be
reactivated. This is useful when stepping through a program because it allows the level of
information displayed to be changed without effecting the normal flow of the program.

It’s possible, but a little more verbose, to achieve this same functional'@@‘ng wastances rather

than global variables: Sa\e
(defclass DEBUG-INFO NO \= 28
1s-a
(slot debug pr‘gﬁ) -‘(Om ’l O" A
(‘@%E_\ekfo] of Ca@@bug print nil)))

(defrule rule-debug
?f <- (info ?info)
=>
(retract ?f)
(printout (send [debug-info] get-debug-print) "Retracting info " ?info crlf))

Unlike fact slots, changes to a slot of an instance won’t trigger pattern matching in a rule unless
the slot is specified on the LHS of that rule, thus you have explicit control over whether an
instance slot triggers pattern-matching. The following rule won’t be retriggered if a change is
made to the debug-print slot:

(defrule rule-debug
?f <- (info ?info)
(object (is-a DEBUG-INFO) (name ?name))
=>
(retract ?f)
(printout (send ?name get-debug-print) "Retracting info " ?info crlf))

This is a generally applicable technique and can be used in many situations to prevent rules from
inadvertently looping when slot values are changed.

CLIPS Basic Programming Guide 71

CLIPS Reference Manual

<slot> = (slot <name> <facet>*) |
(single-slot <name> <facet>*) |
(multislot <name> <facet>*)

<facet> ::= <default-facet> | <storage-facet> |

<access-facet> | <propagation-facet> |
<source-facet> | <pattern-match-facet> |
<visibility-facet> | <create-accessor-facet>
<override-message-facet> | <constraint-attributes>

<default-facet> ::=

(default ?7DERIVE | ?NONE | <expression>*) |
(default-dynamic <expression>*)

<storage-facet> ::= (storage local | shared)

<access-facet>
= (access read-write | read-only | initialize-only)

<propagation-facet> ::= (propagation inherit | no-inherit)

<source-facet> ::= (source exclusive | composite) uK
<patter‘n -match-facet> \e CO
= (pattern-match reactive | non-r acéga

<visibility-facet> ::= (visibl NQ| plj%llﬁl%

<create- acces‘sor-wz " 5
sor 7NOI\é ’rk‘% ite | read-write)
(Qx?message f g

= (override- mEssage ?DEFAULT | <message-name>)

<handler-documentation>
= (message-handler <name> [<handler-type>])

<handler-type> ::= primary | around | before | after

Redefining an existing class deletes the current subclasses and all associated message-handlers.
An error will occur if instances of the class or any of its subclasses exist.

9.3.1 Multiple Inheritance

If one class inherits from another class, the first class is a subclass of the second class, and the
second class is a superclass of the first class. Every user-defined class must have at least one
direct superclass, i.e. at least one class must appear in the is-a portion of the defclass. Multiple
inheritance occurs when a class has more than one direct superclass. COOL examines the direct
superclass list for a new class to establish a linear ordering called the class precedence list. The
new class inherits slots and message-handlers from each of the classes in the class precedence
list. The word precedence implies that slots and message-handlers of a class in the list override

CLIPS Basic Programming Guide 89

CLIPS Reference Manual

Class D directly inherits information from the classes B and A. The class precedence list for D is:
D B A USER OBJECT.

Example 5
(defclass E (is-a A O))

By rule #2, A must precede C. However, C is a subclass of A and cannot succeed A in a
precedence list without violating rule #1. Thus, this is an error.

Example 6
(defclass E (is-a C A))

Specifying that E inherits from A is extraneous, since C inherits from A. However, this definition
does not violate any rules and is acceptable. The class precedence list for E is: E C A B USER
OBIJECT.

Example 7
(defclass F (is-a C B))

Specifying that F inherits from B is extraneous, since C inherits from B. g @X&eeedence
list for F is: F C A B USER OBJECT. The superclass list s \En ow C in F’s class
precedence list but not that B must immediately follo %Sg-

Examples WOt 29
Xal?def?class G (is- a\Cﬁ)—‘(Om “ Af
This i 1§ gg\dl\lalo ates rulg hé&.l;?{ precedence of C says that A should precede B,

but th ecedence li e opposite.

Example 9
(defclass H (is-a A))

(defclass I (is-a B))
(defclass J (is-a HI A B))

The respective class precedence lists of H and I are: H A USER OBJECT and I B USER
OBJECT. If J did not have A and B as direct superclasses, J could have one of three possible
class precedence lists: J H A1 B USER OBJECT,JHI A B USER OBJECT or J HI B A USER
OBJECT. COOL would normally pick the first list since it preserves the family trees (H A and I
B) to the greatest extent possible. However, since J inherits directly from A and B, rule #2
dictates that the class precedence list must be J HI A B USER OBJECT.

Usage Note

For most practical applications of multiple inheritance, the order in which the superclasses are
specified should not matter. If you create a class using multiple inheritance and the order of the

CLIPS Basic Programming Guide 91

CLIPS Reference Manual

and read. The read-only facet says the slot can only be read; the only way to set this slot is with
default facets in the class definition. The initialize-only facet is like read-only except that the
slot can also be set by slot overrides in a make-instance call (see section 9.6.1) and init
message-handlers (see section 9.4). These privileges apply to indirect access via messages as
well as direct access within message-handler bodies (see section 9.4). Note: a read-only slot that
has a static default value will implicitly have the shared storage facet.

Example
CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)
(role concrete)
(slot foo (create-accessor write)
(access read-write))
(slot bar (access read-only)
(default abc))
(slot woz (create-accessor write)
(access initialize-only)))
CLIPS>
(defmessage-handler A put-bar (?value)

(dynamic-put (sym-cat bar) ?value)) O uK

CLIPS> (make-instance a of A (bar 34))
[MSGFUN3] bar slot in [a] of A: write access denled g?%
[PRCCODE4] Execution halted during the actl andler put-bar primary

in class A

NO®
(FI/-L\IIEI§§> (make-instance aﬁ m@ (woz 656_‘ AZ%

)
CLIPS> (s @; ar 1) 2

t in [a @ access denied.
’ﬁ Executlo é_gi ng the actions of message-handler put-bar primary

in " class A

FALSE

CLIPS> (send [a] put-woz 1)

[MSGFUN3] woz slot in [a] of A: write access denied.
[PRCCODE4] Execution halted during the actions of message-handler put-bar primary
in class A

FALSE

CLIPS> (send [a] print)

[a] of A

(foo 34)

(bar abc)

(woz 65)

CLIPS>

9.3.3.5 Inheritance Propagation Facet

An inherit facet says that a slot in a class can be given to instances of other classes that inherit
from the first class. This is the default. The no-inherit facet says that only direct instances of this
class will get the slot.

96 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

Example
CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)
(role concrete)
(slot foo (propagation inherit))
(slot bar (propagation no-inherit)))
CLIPS> (defclass B (is-a A))
CLIPS> (make-instance a of A)
[a]
CLIPS> (make-instance b of B)
[b]
CLIPS> (send [a] print)
[a] of A
(foo nil)
(bar nil)
CLIPS> (send [b] print)
[b] of B
(foo nil)
CLIPS>

9.3.3.6 Source Facet O u\k

When obtaining slots from the class precedence list d $ X@eatlon the default behavior
is to take the facets from the most specific &Dé the sleg and give default values to

any unspecified facets. This is the b p c by t acet. The composite facet
causes facets which are Sg @ pec fst% cific class to be taken from the
next most spec ifi ‘@}:ﬂlnus in an ov ion, the facets of an instance’s slot can be
specif’ than o g Ven though facets may be taken from superclasses,
the slot is st111 con51der qas in the new class for purposes of visibility (see section

9.3.3.8). One good example of a use of this feature is to pick up a slot definition and change only
its default value for a new derived class.

Example

CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)

(multislot foo (access read-only)

(default a b ¢)))

CLIPS>
(defclass B (is-a A)

(slot foo (source composite) ; multiple and read-only

; from class A
(default d e f)))

CLIPS> (describe-class B)

3k ok sk ok ok sk o ok oK ok sk ok oK ok sk ok ok ok sk ok K ok ok 3k K ok ok 3k 3k ok ok 3k 3k ok ok 3k 3k ok ok 3k 3k ok ok ok ok o oK ok ok ok oK ok ok koK Kk kK Kk

Concrete: direct instances of this class can be created.
Reactive: direct instances of this class can match defrule patterns.

Direct Superclasses: A
Inheritance Precedence: B A USER OBJECT

CLIPS Basic Programming Guide 97

CLIPS Reference Manual

Example
CLIPS> (clear)
CLIPS> (defclass A (is-a USER) (role concrete))
CLIPS> (make-instance a of A)

[a]

CLIPS>

(defmessage-handler A print-args (?a ?b $7c¢)
(printout t (instance-name ?self) " " ?a " " 7b

" and " (length$?c) " extras: " ?c crlf))
CLIPS> (send [a] print-args 1 2)
[a] 1 2 and @ extras: O
CLIPS> (send [a] print-args a b ¢ d)
[a] a b and 2 extras: (c d)
CLIPS>

9.4.2 Message-handler Actions

The body of a message-handler is a sequence of expressions that are executed in order when the
handler is called. The return value of the message-handler is the result of the evaluation of the
last expression in the body.

Handler actions may directly manipulate slots of the active in 9 , slots can only be
manipulated by sending the object slot-accesso aee sections 9.3.3.9 and 9.4.3).
However, handlers are considered part Q tion (%n 2.6.2) of an object, and
thus can directly view and clﬁ d‘ts of the a fe several functions which
operate implicitly o ﬁstance e"of messages) and can only be called
from wi ?w andler. Tl@ are dlscussed in section 12.16.

A shorthand notation is provided for accessing slots of the active instance from within a
message-handler.

Syntax

?self:<slot-name>

Example
CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)
(role concrete)
(slot foo (default 1))
(slot bar (default 2)))

CLIPS>

(defmessage-handler A print-all-slots
(printout t ?self:foo " " ?self:bar crlf))

CLIPS> (make-instance a of A)

[a]

CLIPS> (send [a] print-all-slots)

12

CLIPS>

106 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

(defclass B (is-a A)
(role concrete)
(slot foo (visibility public)))
CLIPS> (make-instance b of B)
[b]
CLIPS> (send [b] get-foo)
nil
CLIPS>

9.4.3 Daemons

Daemons are pieces of code which execute implicitly whenever some basic action is taken upon
an instance, such as initialization, deletion, or reading and writing of slots. All these basic actions
are implemented with primary handlers attached to the class of the instance. Daemons may be
easily implemented by defining other types of message-handlers, such as before or after, which
will recognize the same messages. These pieces of code will then be executed whenever the
basic actions are performed on the instance.

Example \4
CLIPS> (clear) O ‘\)

CLIPS> (defclass A (is-a USER) (role concrete)) \ C
CLIPS> 5

(defmessage-handler A init before () Sf
(printout t "In'l.‘t'l.(ﬂ.lZ'Lng a ne N@ class %
crlf)) A 2

CLIPS> (make-instan O“

Inltlallzlng e\ﬁs ce of cl %A

[a

eV oa0e >
9.4.4 Predefined System Message-handlers
CLIPS defines eight primary message-handlers that are attached to the class USER. These

handlers cannot be deleted or modified.

9.4.4.1 Instance Initialization

Syntax
(defmessage-handler USER init primary ()

This handler is responsible for initializing instances with class default values after creation. The
make-instance and initialize-instance functions send the init message to an instance (see
sections 9.6.1 and 9.6.2); the user should never send this message directly. This handler is
implemented using the init-slots function (see section 12.13). User-defined init handlers should
not prevent the system message-handler from responding to an init message (see section 9.5.3).

108 Section 9 - CLIPS Object Oriented Language (COOL)

Exam

9.4.4.2 Instance Deletion

Syntax

This handler is responsibl

le
CLIPS> (clear)
CLIPS>
(defclass CAR (is-a USER)
(role concrete)
(slot price (default 75000))
(slot model (default Corniche)))
CLIPS> (watch messages)
CLIPS> (watch message-handlers)
CLIPS> (make-instance Rolls-Royce of CAR)
MSG >> create ED:1 (<Instance-Rolls-Royce>)
HND >> create primary in class USER
ED:1 (<Instance-Rolls-Royce>)
HND << create primary in class USER
ED:1 (<Instance-Rolls-Royce>)
MSG << create ED:1 (<Instance-Rolls-Royce>)
MSG >> init ED:1 (<Instance-Rolls-Royce>)
HND >> init primary in class USER
ED:1 (<Instance-Rolls-Royce>)
HND << init primary in class USER
ED:1 (<Instance-Rolls-Royce>)
MSG << init ED:1 (<Instance-Rolls-Royce>)
[Rolls-Royce]
CLIPS>

N
o g
C@nv@%&@wsj d pAa?? O

CLIPS Reference Manual

?r deleting an instance from the system. The user must directly send

a delete message to an instance. User-defined delete message-handlers should not prevent the
system message-handler from responding to a delete message (see section 9.5.3). The handler
returns the symbol TRUE if the instance was successfully deleted, otherwise it returns the
symbol FALSE.

Exam

le
CLIPS> (send [Rolls-Royce] delete)
MSG >> delete ED:1 (<Instance-Rolls-Royce>)
HND >> delete primary in class USER
ED:1 (<Instance-Rolls-Royce>)
HND << delete primary in class USER
ED:1 (<Stale Instance-Rolls-Royce>)

MSG << delete ED:1 (<Stale Instance-Rolls-Royce>)

TRUE
CLIPS>

CLIPS Basic Programming Guide

109

CLIPS Reference Manual

9.4.4.3 Instance Display

Syntax
(defmessage-handler USER print primary ())

This handler prints out slots and their values for an instance.

Example
CLIPS> (make-instance Rolls-Royce of CAR)
MSG >> create ED:1 (<Instance-Rolls-Royce>)
HND >> create primary in class USER
ED:1 (<Instance-Rolls-Royce>)
HND << create primary in class USER
ED:1 (<Instance-Rolls-Royce>)
MSG << create ED:1 (<Instance-Rolls-Royce>)
MSG >> init ED:1 (<Instance-Rolls-Royce>)
HND >> init primary in class USER
ED:1 (<Instance-Rolls-Royce>)
HND << init primary in class USER
ED:1 (<Instance-Rolls-Royce>)
MSG << init ED:1 (<Instance-Rolls-Royce>) \)K
[Rolls-Royce]
CLIPS> (send [Rolls-Royce] print) \e .
MSG >> print ED:1 (<Instance-Rolls-Royce>) esa-
HND >> print primary in class USER NO
ED:1 (<Instance- Rolls R D) Al%
[Rolls-Royce] of CAR _‘(6 O“

(price 75000).

(model Corgi ’LB
H?(@“&“ma ry @@@ER

1 (<Instar? oyce>)
MSG << print ED:1 (<¥nstance-Rolls-Royce>)
CLIPS> (unwatch messages)

CLIPS. (unwatch message-handlers)
CLIPS>

9.4.4.4 Directly Modifying an Instance

Syntax
(defmessage-handler USER direct-modify primary
(?slot-override-expressions))

This handler modifies the slots of an instance directly rather than using put- override messages to
place the slot values. The slot-override expressions are passed as an EXTERNAL_ADDRESS
data object to the direct-modify handler. This message is used by the functions modify-instance
and active-modify-instance.

110 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

Example
The following around message-handler could be used to insure that all modify message
slot-overrides are handled using put- messages.

(defmessage-handler USER direct-modify around
(?overrides)
(send ?self message-modify ?overrides))

9.4.4.5 Modifying an Instance using Messages

Syntax

(defmessage-handler USER message-modify primary
(?slot-override-expressions)

This handler modifies the slots of an instance using put- messages for each slot update. The
slot-override expressions are passed as an EXTERNAL_ADDRESS data object to the
message-modify handler. This message is used by the functions message-modify-instance and
active-message-modify-instance. \(

9.4.4.6 Directly Duplicating an Instance

Syntax Q
(defmessage- r&d\lsER d1r'ect d %qpr‘l
@\T@‘(ﬁ&: ame 7510©\em re551ons))

This handler duplicates an instance without using put- messages to assign the slot-overrides. Slot
values from the original instance and slot overrides are directly copied. If the name of the new
instance created matches a currently existing instance-name, then the currently existing instance
is deleted without use of a message. The slot-override expressions are passed as an
EXTERNAL_ADDRESS data object to the direct-duplicate handler. This message is used by the
functions duplicate-instance and active-duplicate-instance.

Example
The following around message-handler could be used to insure that all duplicate message
slot-overrides are handled using put- messages.

(defmessage-handler USER direct-duplicate around

(?new-name ?overrides)
(send ?7self message-duplicate ?new-name ?overrides))

CLIPS Basic Programming Guide 111

CLIPS Reference Manual

There must be at least one applicable primary handler for a message, or a message execution
error will be generated (see section 9.5.4).

9.5.3 Shadowed Message-handlers

When one handler must be called by another handler in order to be executed, the first handler is
said to be shadowed by the second. An around handler shadows all handlers except more
specific around handlers. A primary handler shadows all more general primary handlers.

Messages should be implemented using the declarative technique, if possible. Only the handler
roles will dictate which handlers get executed; only before and after handlers and the most
specific primary handler are used. This allows each handler for a message to be completely
independent of the other message-handlers. However, if around handlers or shadowed primary
handlers are necessary, then the handlers must explicitly take part in the message dispatch by
calling other handlers they are shadowing. This is called the imperative technique. The functions
call-next-handler and override-next-handler (see section 12.16.2) allow a handler to execute

Example \e .C
(defmessage-handler USER my-message around (esa
(call-next-handler))
(defmessage-handler USER my- mess 2% .
(defmessage-handler USER ﬁv “ A —USER around begin
(call-nextsh) AQ O __OBJECT around begin
(defmessag uc‘@ my- mess 3&‘
Cde =0 round O USER before
ca 1 next- handleé OBJECT before
(defmessage-handler OBJMCT my-message before ()) USER primary begin
(defmessage-handler OBJECT my-message ()) .
(defmessage-handler‘ OBJECT mz-message after ()) OBJECT primary

USER primary end

For a message sent to an instance of a class which inherits from USER, OBJECT after
the diagram to the right illustrates the order of execution for the handlers USER after
attached to the classes USER and OBJECT. The brackets indicate where ~ OBJECT around end

a particular handler begins and ends execution. Handlers enclosed within ~— USER around end
a bracket are shadowed.

9.5.4 Message Execution Errors

If an error occurs at any time during the execution of a message-handler, any currently executing
handlers will be aborted, any handlers which have not yet started execution will be ignored, and
the send function will return the symbol FALSE.

114 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

CLIPS>
(defclass A (is-a USER) (role concrete)
(slot x (create-accessor write) (default 1)))
CLIPS>
(definstances A-OBJECTS
(al of A)
(of A (x 65)))
CLIPS> (watch instances)
CLIPS> (reset)
==> instance [initial-object] of INITIAL-OBJECT
==> instance [al] of A
==> instance [genl] of A
CLIPS> (reset)
<== instance [initial-object] of INITIAL-OBJECT
<== instance [al] of A
<== instance [genl] of A
==> instance [initial-object] of INITIAL-OBJECT
==> instance [al] of A
==> instance [gen2] of A
CLIPS> (unwatch instances)
CLIPS>

Upon startup and after a clear command, CLIPS automatically conﬁct\%following

definstances. a\e ‘C

(definstances initial-object tes
(initial-object of INITTAL-OB] CTNO AZ%
The class INITIAL‘—OBW I&nge ine;dxfﬁtﬂcl@&at is a direct subclass of USER.

e e

(role concrete)
(pattern-match reactive))

The initial-object definstances and the INITIAL-OBJECT class are only defined if both the
object system and defrules are enabled (see section 2 of the Advanced Programming Guide). The
INITIAL-OBJECT class cannot be deleted, but the initial-object definstances can. See section
5.4.9 for details on default patterns which pattern-match against the initial-object instance.

Important Note

Although you can delete the initial-object definstances, in practice you never should since many
conditional elements rely on the existence of the initial-object instance for correct operation.
Similarly, the initial-object instance created by the initial-object definstances when a reset
command is issued, should never be deleted by a program.

9.6.2 Reinitializing Existing Instances

The initialize-instance function provides the ability to reinitialize an existing instance with class
defaults and new slot-overrides. The return value of initialize-instance is the name of the

118 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

HND >> direct-modify primary in class USER.
ED:1 (<Instance-a> <Pointer-0019CD5A>)
= local slot foo in instance a <- 0
HND << direct-modify primary in class USER.
ED:1 (<Instance-a> <Pointer-0019CD5A>)
MSG << direct-modify ED:1 (<Instance-a> <Pointer-0019CD5A>)
TRUE
CLIPS> (unwatch all)
CLIPS>

9.6.7.2 Directly Modifying an Instance with Immediate Pattern-Matching

The active-modify-instance function uses the direct-modify message to change the values of
the instance. Object pattern-matching occurs as slot modifications are being performed.

Syntax

(active-modify-instance <instance> <slot-override>*)

9.6.7.3 Modifying an Instance using Messages with Delayed Pattern- MatchlU\(

The message-modify-instance function uses the message e to change the values
of the instance. Object pattern-matching is d@ 6 e slot modifications have been

performed. "(o m “ A’Z

Syntax

(messagm ce <inst ce% override>*)
Examge (P ag

CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)
(role concrete)
(slot foo)
(slot bar (create-accessor write)))
CLIPS> (make-instance a of A)
[a]
CLIPS> (watch all)
CLIPS> (message-modify-instance a (bar 4))
MSG >> message-modify ED:1 (<Instance-a> <Pointer-009F04A0>)
HND >> message-modify primary in class USER
ED:1 (<Instance-a> <Pointer-009F04A0>)
MSG >> put-bar ED:2 (<Instance-a> 4)
HND >> put-bar primary in class A
ED:2 (<Instance-a> 4)
::= local slot bar in instance a <- 4
HND << put-bar primary in class A
ED:2 (<Instance-a> 4)
MSG << put-bar ED:2 (<Instance-a> 4)
HND << message-modify primary in class USER
ED:1 (<Instance-a> <Pointer-009F04A0>)
MSG << message-modify ED:1 (<Instance-a> <Pointer-009F04A0>)

CLIPS Basic Programming Guide 123

CLIPS Reference Manual

<==

HND

MSG
==>
MSG
HND

HND

MSG
MSG
HND

HND
MSG

MSG
HND

HND
MSG
MSG
HND
HND

MSG

instance [b] of A

<< delete primary in class USER
ED:2 (<Stale Instance-b>)

<< delete ED:2 (<Stale Instance-b>)

instance [b] of A

>> create ED:2 (<Instance-b>)

>> create primary in class USER
ED:2 (<Instance-b>)

<< create primary in class USER
ED:2 (<Instance-b>)

<< create ED:2 (<Instance-b>)

>> put-bar ED:2 (<Instance-b> 6)

>> put-bar primary in class A
ED:2 (<Instance-b> 6)

local slot bar in instance b <- 6

<< put-bar primary in class A
ED:2 (<Instance-b> 6)

<< put-bar ED:2 (<Instance-b> 6)

>> put-foo ED:2 (<Instance-b> ©)

>> put-foo primary in class A
ED:2 (<Instance-b> 0)

local slot foo in instance b <- 0

<< put-foo primary in class A \)K
ED:2 (<Instance-b> 0)

<< put-foo ED:2 (<Instance-b> @) \e CO *

>> init ED:2 (<Instance-b>) Sa *

>> init primary in class USER te
ED:2 (<Instance- b>) NO %

<< init primary 1n m Az
ED:2 (<Inst “

<< init @ﬁ a ce b>) &

< lTicate p ,L s USER

HN
Pi 71 (<Insta ﬁg ointer-009F04A0>)
MS& << message-duplifa (<Instance-a> [b] <Pointer-009F04A0>)

[b]

CLIPS> (unwatch all)
CLIPS>

9.6.8.4 Duplicating an Instance using Messages with Immediate Pattern-Matching

The active-message-duplicate-instance function uses the message-duplicate message to change
the values of the instance. Object pattern-matching occurs as slot modifications are being
performed.

Syntax

(active-message-duplicate-instance <instance>

126

[to <instance-name>]
<slot-override>*)

Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

Example
For the instance-set template given in section 9.7.1, thirty instance-sets would be generated in the
following order:

1. [Boy-1] [Girl-1] 16. [Boy-4] [Girl-1]
2. [Boy-1] [Girl-2] 17. [Boy-4] [Girl-2]
3. [Boy-1] [Woman-1] 18. [Boy-4] [Woman-1]
4. [Boy-1] [Woman-2] 19. [Boy-4] [Woman-2]
5. [Boy-1] [Woman-3] 20. [Boy-4] [Woman-3]
6. [Boy-2] [Girl-1] 21. [Man-1] [Girl-1]
7. [Boy-2] [Girl-2] 22. [Man-1] [Girl-2]
8. [Boy-2] [Woman-1] 23. [Man-1] [Woman-1]
9. [Boy-2] [Woman-2] 24. [Man-1] [Woman-2]
10. [Boy-2] [Woman-3] 25. [Man-1] [Woman-3]
11. [Boy-3] [Girl-1] 26. [Man-2] [Girl-1]
12. [Boy-3] [Girl-2] 27. [Man-2] [Girl-2]
13 [Boy-3] [Woman-1] 28. [Man-2] [Woman-1]
14. [Boy-3] [Woman-2] 29. [Man-2] [Woman-2]
15. [Boy-3] [Woman-3] 30. [Man-2] [Woman-3]
Example u\k

Consider the following instance-set template:

((?f1 FEMALE) (?f2 FEMALE)) O"e

Twenty-five instance-sets wouﬁl?":afa\ed in %f &mA‘Z?%

14 .[Woman-1] [Woman-2]

1ﬁ1ré\k&r€{2? ag 15.[Woman-1] [Woman-3]
G

ir1l-1] [Woman- 16. [Woman-2] [Girl-1]

4. [Girl-1] [Woman-2 17.[Woman-2] [Girl-2]
5. [Girl-1] [Woman-3] 18.[Woman-2] [Woman-1]
6. [Girl-2] [Girl-1] 19.[Woman-2] [Woman-2]
7. [Girl-2] [Girl-2] 20.[Woman-2] [Woman-3]
8. [Girl-2] [Woman-1] 21.[Woman-3] [Girl-1]
9. [Girl-2] [Woman-2] 22 .[Woman-3] [Girl-2]
10.[Girl-2] [Woman-3] 23.[Woman-3] [Woman-1]
11.[Woman-1] [Girl-1] 24 . [Woman-3] [Woman-2]
12.[Woman-1] [Girl-2] 25.[Woman-3] [Woman-3]

13.[Woman-1] [Woman-1]

The instances of class GIRL are examined before the instances of class WOMAN because GIRL
was defined before WOMAN.

9.7.3 Query Definition

A query is a user-defined boolean expression applied to an instance-set to determine if the
instance-set meets further user-defined restrictions. If the evaluation of this expression for an
instance-set is anything but the symbol FALSE, the instance-set is said to satisfy the query.

130 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

Syntax

<query> ::= <boolean-expression>

Example
Continuing the previous example, one query might be that the two instances in an ordered pair
have the same age.

(= (send ?man-or-boy get-age) (send ?woman-or-girl get-age))

Within a query, slots of instance-set members can be directly read with a shorthand notation
similar to that used in message-handlers (see section 9.4.2). If message-passing is not explicitly
required for reading a slot (i.e. there are no accessor daemons for reads), then this second method
of slot access should be used, for it gives a significant performance benefit.

Syntax

<instance-set-member-variable>:<slot-name>

Example
The previous example could be rewritten as: u\k

(= ?man-or-boy:age ?woman-or-girl:age) esa\e .
Since only instance-sets which satisfy, f nte A@ query is evaluated for all
possible instance- sets the que @mmvea?y s@'ﬁ

9.74 @Xh@e}’Actlon @ @@e

A distributed action is a user-defined expression evaluated for each instance-set which satisfies
a query. Unlike queries, distributed actions must use messages to read slots of instance-set
members. If more than one action is required, use the progn function (see section 12.6.5) to
group them.

Action Syntax

<action> ::= <expression>

Example
Continuing the previous example, one distributed action might be to simply print out the ordered
pair to the screen.

(printout t "(" ?man-or-boy "," ?woman-or-girl ")" crlf)

CLIPS Basic Programming Guide 131

CLIPS Reference Manual

9.7.5 Scope in Instance-set Query Functions

An instance-set query function can be called from anywhere that a regular function can be called.
If a variable from an outer scope is not masked by an instance-set member variable, then that
variable may be referenced within the query and action. In addition, rebinding variables within
an instance-set function action is allowed. However, attempts to rebind instance-set member
variables will generate errors. Binding variables is not allowed within a query. Instance-set query
functions can be nested.

Example
CLIPS>
(deffunction count-instances (?class)
(bind ?count 0)
(do-for-all-instances ((?ins ?class)) TRUE
(bind ?count (+ ?count 1)))
?count)
CLIPS>
(deffunction count-instances-2 (?class)
(length (find-all-instances ((?ins ?class)) TRUE)))

CLIPS> (count-instances WOMAN) K
3 U

CLIPS> (count-instances-2 BOY) \e
4 .
CLIPS> a'
N Ox_eS
Instance-set member Variablﬁ‘g:@m in scope ﬁ:&n&Z%ance—set query function.

Attempting to use 1-n r V&I‘% scope will generate an error.

Exal(IIlL E PS> e age

(deffunction last- 1nstance (?class)
(any-instancep ((?ins ?class)) TRUE)
?ins)

[PRCCODE3] Undefined variable ins referenced in deffunction.

ERROR:
(deffunction last-instance
(?class)
(any-instancep ((?ins ?class))
TRUE)
?ins
)
CLIPS>

9.7.6 Errors during Instance-set Query Functions

If an error occurs during an instance-set query function, the function will be immediately
terminated and the return value will be the symbol FALSE.

132 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

9.7.7 Halting and Returning Values from Query Functions

The functions break and return are now valid inside the action of the instance-set query
functions do-for-instance, do-for-all-instances and delayed-do-for-all-instances. The return
function is only valid if it is applicable in the outer scope, whereas the break function actually
halts the query.

9.7.8 Instance-set Query Functions

The instance query system in COOL provides six functions. For a given set of instances, all six
query functions will iterate over these instances in the same order (see section 9.7.2). However,
if a particular instance is deleted and recreated, the iteration order will change.

9.7.8.1 Testing if Any Instance-set Satisfies a Query

satisfies the query, then the function is immediately terminated, and the retyr ue is the
symbol TRUE. Otherwise, the return value is the symbol FALSE\ CO

Syntax

(any-instancep <instance-set-te Nth >) %
Example "(Om 9 O“ AZ
Are there a @&r’ \@¥S309 ’LB

CL PS> (any-instance (QAAN)) (> ?man:age 30))
TRUE
CLIPS>

This function applies a query to each instance-set which matches the template. If a:i instance-set

9.7.8.2 Determining the First Instance-set Satisfying a Query

This function applies a query to each instance-set which matches the template. If an instance-set
satisfies the query, then the function is immediately terminated, and the instance-set is returned
in a multifield value. Otherwise, the return value is a zero-length multifield value. Each field of
the multifield value is an instance-name representing an instance-set member.

Syntax

(find-instance <instance-set-template> <querys>)

Example
Find the first pair of a man and a woman who have the same age.

CLIPS>
(find-instance ((?m MAN) (?w WOMAN)) (= ?m:age ?w:age))
([Man-1] [Woman-1])

CLIPS Basic Programming Guide 133

CLIPS Reference Manual

CLIPS>

9.7.8.3 Determining All Instance-sets Satisfying a Query

This function applies a query to each instance-set which matches the template. Each instance-set
which satisfies the query is stored in a multifield value. This multifield value is returned when
the query has been applied to all possible instance-sets. If there are n instances in each
instance-set, and m instance-sets satisfied the query, then the length of the returned multifield
value will be n * m. The first n fields correspond to the first instance-set, and so on. Each field of
the multifield value is an instance-name representing an instance-set member. The multifield
value can consume a large amount of memory due to permutational explosion, so this function
should be used judiciously.

Syntax

(find-all-instances <instance-set-template> <query>)

Example
Find all pairs of a man and a woman who have the same age. O u\k

G

CLIPS>

(find-all-instances ((?m MAN) (7w WO“) ‘@&a‘\age))
([Man-1] [Woman-1] [Man-2] [Woman-2] AZ

9.7 .S.W Qéllbln for t Q st’kﬂ@nce set Satisfying a Query

This function applies a qu y to each instance-set which matches the template. If an instance-set
satisfies the query, the speaﬁed action is executed, and the function is immediately terminated.
The return value is the evaluation of the action. If no instance-set satisfied the query, then the
return value is the symbol FALSE.

CLIPS>

Syntax

(do-for-instance <instance-set-template> <query> <action>*)

Example
Print out the first triplet of different people that have the same age. The calls to neq in the query
eliminate the permutations where two or more members of the instance-set are identical.

CLIPS>
(do-for-instance ((?pl PERSON) (?p2 PERSON) (?p3 PERSON))
(and (= ?pl:age ?p2:age ?p3:age)
(neq ?pl ?p2)
(neq ?pl 7p3)
(neq ?p2 7p3))

(printout t ?p1 " " ?p2 " " ?p3 crlf))
[Girl-2] [Boy-2] [Boy-3]
CLIPS>

134 Section 9 - CLIPS Object Oriented Language (COOL)

CLIPS Reference Manual

Example
(defmodule FOO
(import BAR ?7ALL)
(import YAK deftemplate ?ALL)
(import GOZ defglobal x y z)
(export defgeneric +)
(export defclass ?ALL))

10.2 SPECIFYING A CONSTRUCT’S MODULE

The module in which a construct is placed can be specified when the construct is defined. The
deffacts, deftemplate, defrule, deffunction, defgeneric, defclass, and definstances constructs all
specify the module for the construct by including it as part of the name. The module of a
defglobal construct is indicated by specifying the module name after the defglobal keyword. The
module of a defmessage-handler is specified as part of the class specifier. The module of a
defmethod is specified as part of the generic function specifier. For example, the following
constructs would be placed in the DETECTION module.

(defrule DETECTION: :Find-Fault u\(

(sensor (name ?name) (value bad))
cO-
(assert (fault (name ?name))))

(defglobal DETECTION 7*count* _ NO" 2%
(defmessage- hcmdler' T‘§ OMP et “ge%
OWD)

(* 7?self:
@w&l@ ETECTIO a@@ING) (?y STRING))
(str-cat ?x ?y))

Example
CLIPS> (clear)
CLIPS> (defmodule A)
CLIPS> (defmodule B)
CLIPS> (defrule foo =>)
CLIPS> (defrule A::bar =>)
CLIPS> (list-defrules)
bar
For a total of 1 defrule.
CLIPS> (set-current-module B)

A

CLIPS> (list-defrules)
foo

For a total of 1 defrule.
CLIPS>

138 Section 10 - Defmodule Construct

CLIPS Reference Manual

knowledge base to be partitioned such that rules and other constructs can only “see” those facts
and instances which are of interest to them. Note that the initial-fact deftemplate and the
INITIAL-OBJECT defclass must explicitly be imported from the MAIN module. Rules which
have the initial-fact or initial-object pattern added to their LHS (such as a rule thats first CE is a
not CE) will not be activated unless the corresponding construct for the pattern is imported.

Example
CLIPS> (clear)
CLIPS> (defmodule A (export deftemplate foo bar))
CLIPS> (deftemplate A::foo (slot x))
CLIPS> (deftemplate A::bar (slot y))
CLIPS> (deffacts A::info (foo (x 3)) (bar (y 4)))
CLIPS> (defmodule B (import A deftemplate foo))
CLIPS> (reset)
CLIPS> (facts A)
f-1 (foo (x 3))
f-2 (bar (y 4))
For a total of 2 facts.
CLIPS> (facts B)
f-1 (foo (x 3))

For a total of 1 fact. O uK

CLIPS> C
5a\e
10.5.1 Specifying Instance-Names NO‘G

Instance-names are rqu\ﬁj @@Qs}c\wﬁﬁpﬁ lar%:)%ﬂe, but multiple instances of
he

the same nam v@ scope at an)/‘k‘ syntax of instance-names has been
extenc?lg modul g te that the left and right brackets in bold are to be
typed o not indicate G part of the syntax).

Syntax

<instance-name> ::= [<symbol>] |
[::<symbol>] |
[<module>: :symbol>]

Specifying just a symbol as the instance-name, such as [Rolls-Royce], will search for the
instance in the current module only. Specifying only the :: before the name, such as
[::Rolls-Royce], will search for the instance first in the current module and then recursively in
the imported modules as defined in the module definition. Specifying both a symbol and a
module name, such as [CARS::Rolls-Royce], searches for the instance only in the specified
module. Regardless of which format is specified, the class of the instance must be in scope of the
current module in order for the instance to be found.

10.6 MODULES AND RULE EXECUTION

Each module has its own pattern-matching network for its rules and its own agenda. When a run
command is given, the agenda of the module which is the current focus is executed (note that the

142 Section 10 - Defmodule Construct

CLIPS Reference Manual

INSTANCE for this attribute is equivalent to using both INSTANCE-NAME and
INSTANCE-ADDRESS. ?VARIABLE allows any type to be stored.

11.2 ALLOWED CONSTANT ATTRIBUTES

The allowed constant attributes allow the constant values of a specific type which can be stored
in a slot to be restricted. The list of values provided should either be a list of constants of the
specified type or the keyword ?VARIABLE which means any constant of that type is allowed.
The allowed-values attribute allows the slot to be restricted to a specific set of values
(encompassing all types). Note the difference between using the attribute (allowed-symbols red
green blue) and (allowed-values red green blue). The allowed-symbols attribute states that if the
value is of type symbol, then its value must be one of the listed symbols. The allowed-values
attribute completely restricts the allowed values to the listed values. The allowed-classes
attribute does not restrict the slot value in the same manner as the other allowed constant
attributes. Instead, if this attribute is specified and the slot value is either an instance address or
instance name, then the class to which the instance belongs must be a class specified in the
allowed-classes attribute or be a subclass of one of the specified classes. u

O.
Syntax \e ‘C
<allowed-constant-attribute>
= (allowed-symbols

(allowed st 115 AZ
(al <1ex % |
\& -mteg r@ t>) |
\,\e lowed- ﬂ ts ist>) |
P(e @%g <number list>) |
stance names <instance-list>) |
(a1l

owed-classes <class-name-list>)
(allowed-values <value-list>)

<symbol-list> ::= <symbol>+ | ?VARIABLE
<string-list> ::= <string>+ | ?VARIABLE
<lexeme-list> ::= <lexeme>+ | ?VARIABLE
<integer-list> ::= <integer>+ | ?VARIABLE
<float-list> ::= <float>+ | ?VARIABLE

<number-list> <number>+ | ?VARIABLE

<instance-name-list> ::= <instance-name>+ | ?VARIABLE
<class-name-list> ::= <class-name>+ | ?VARIABLE
<value-list> 1= <constant>+ | ?VARIABLE

Specifying the allowed-lexemes attribute is equivalent to specifying constant restrictions on both
symbols and strings. A string or symbol must match one of the constants in the attribute list.

146 Section 11 - Constraint Attributes

CLIPS Reference Manual

(defrule error
(foo (x $7x))
(bar (y $7y))
(woz (z $7x $7y))
=>)

CLIPS>

The variable ?x, found in the first pattern, can have a maximum of two fields. The variable ?y,
found in the second pattern, can have a maximum of three fields. Added together, both variables
have a maximum of five fields. Since slot z in the the third pattern has a minimum cardinality of
seven, the variables 7x and ?y cannot satisfy the minimum cardinality restriction for this slot.

Example 3
CLIPS> (deftemplate foo (slot x (type SYMBOL)))

CLIPS>

(defrule error
(foo (x ?x))
(test (> ?x 10))

=>)
[RULECSTR2] Previous variable bindings of ?x caused the type r‘estr‘iﬁKfor‘
argument #1 of the expression (> ?x 10) O .
found in CE #2 to be violated C

ERROR:
(defrule error NO"
(foo (x ?x))

(test (> ?‘X 10)), "
Breve’

The variable ?x, found inEOt x of the first pattern, must be a symbol. Since the > function
expects numeric values for its arguments, an error occurs.

150 Section 11 - Constraint Attributes

CLIPS Reference Manual

The build function is not available for binary-load only or run-time CLIPS configurations (see
the Advanced Programming Guide).

Example
CLIPS> (clear)

CLIPS> (build "(defrule foo (a) => (assert (b)))")
TRUE

CLIPS> (rules)

foo

For a total of 1 rule.

CLIPS>

12.3.7 Converting a String to Uppercase

The upcase function will return a string or symbol with uppercase alphabetic characters.

Syntax

(upcase <string-or-symbol-expression>)

Example
CLIPS> (upcase "This is a test of upcase")

"THIS IS A TEST OF UPCASE" a\e .
CLIPS> (upcase A_Word_Test_for_Upcase) tes
A_WORD_TEST_FOR_UPCASE NO

CLIPS> ‘ (Om “
1238 ﬁver‘&\&\l!}glt% 85492 O

The lowcase function will feturn a string or symbol with lowercase alphabetic characters.

cO-

Syntax

(lowcase <string-or-symbol-expression>)

Example

CLIPS> (lowcase "This is a test of lowcase")
"this is a test of lowcase"

CLIPS> (lowcase A_Word_Test_for_Lowcase)
a_word_test_for_lowcase

CLIPS>

12.3.9 Comparing Two Strings

The str-compare function will compare two strings to determine their logical relationship (i.e.,
equal to, less than, greater than). The comparison is performed character-by-character until the
strings are exhausted (implying equal strings) or unequal characters are found. The positions of
the unequal characters within the ASCII character set are used to determine the logical
relationship of unequal strings.

166 Section 12 - Actions and Functions

CLIPS Reference Manual

symbol, a number, or a string. Several logical names are predefined by CLIPS and are used
extensively throughout the CLIPS code. These are

Name Description

stdin The default for all user inputs. The read and readline functions
read from stdin if t is specified as the logical name.

stdout The default for all user outputs. The format and printout
functions send output to stdout if t is specified as the logical
name.

wclips The CLIPS prompt is sent to this logical name.
wdialog | All informational messages are sent to this logical name.
wdisplay | Requests to display CLIPS information, such as facts or rules,
are sent to this logical name.

werror All error messages are sent to this logical name.
wwarning | All warning messages are sent to this logical name.

wtrace All watch information is sent to this logical name (with the
exception of compilations which is sent to wdlalog) K

Any of these logical names may be used anywhere a 10%%&\6)@)6@@

CLIPS pro &6}4\! mos glo 5d I/O capabilities through several predefined
functlé (‘ g

12.4.2 Common I/O Functloﬁ(O

12.4.2.1 Open

The open function allows a user to open a file from the RHS of a rule and attaches a logical
name to it. This function takes three arguments: (1) the name of the file to be opened; (2) the
logical name which will be used by other CLIPS I/O functions to access the file; and (3) an
optional mode specifier. The mode specifier must be one of the following strings:

Mode | Means
"r" read access only
"w" write access only
"r+" | read and write access
"a" append access only
wb" | binary write access

CLIPS Basic Programming Guide 169

CLIPS Reference Manual

If the mode is not specified, a default of read access only is assumed. The access mode may not
be meaningful in some operating systems.

Syntax

(open <file-name> <logical-name> [<mode>])

The <file-name> must either be a string or symbol and may include directory specifiers. If a
string is used, the backslash (\) and any other special characters that are part of <file-name> must
be escaped with a backslash. The logical name should not have been used previously. The open
function returns TRUE if it was successful, otherwise FALSE.

Example
CLIPS> (open "myfile.clp" writeFile "w")
TRUE
CLIPS> (open "MS-DOS\\directory\\file.clp" readFile)
TRUE
CLIPS>

12.4.2.2 Close O U\(

The close function closes a file stream previously o %@S@' pen command. The file is

specified by a logical name previously attach n%
Syntax “ Af

(close [<logl-caéW>]ﬁ ,L96 O

If clon(%d w1thout? open files will be closed. The user is responsible for
closing all files opened during execution. If files are not closed, the contents are not guaranteed
correct, however, CLIPS will attempt to close all open files when the exit command is executed.
The close function returns TRUE if any files were successfully closed, otherwise FALSE.

Example
CLIPS> (open "myfile.clp" writeFile "w")
TRUE
CLIPS> (open "MS-DOS\\directory\\file.clp" readFile)
TRUE
CLIPS> (close writeFile)
TRUE
CLIPS> (close writeFile)
FALSE
CLIPS> (close)
TRUE
CLIPS> (close)
FALSE
CLIPS>

170 Section 12 - Actions and Functions

CLIPS Reference Manual

where the first argument to bind, <variable>, is the local or global variable to be bound (it may
have been bound previously). The bind function may also be used within a message-handler's
body to set a slot's value.

If no <expression> is specified, then local variables are unbound and global variables are reset to
their original value. If one <expression> is specified, then the value of <variable> is set to the
return value from evaluating <expression>. If more than one <expression> is specified, then all
of the <expressions> are evaluated and grouped together as a multifield value and the resulting
value is stored in <variable>.

The bind function returns the symbol FALSE when a local variable is unbound, otherwise, the
return value is the value to which <variable> is set.

Example 1
CLIPS> (defglobal ?*x* = 3.4)
CLIPS> ?7*x*

2L:A['PS> (bind 7*x* (+ 8 9)) UK
17 CO .
CLIPS> 7*x* a\e .

17

CLIPS> (bind ?*x* (create$ a b c d))NO‘es

CIbss o .‘(Om A O“

(abcd .
CLIPS> (higd *@\N D) 2&
eI oa0e

(de f)

CLIPS> (bind ?*x*)
3.4

CLIPS> 7*x*

3.4

CLIPS>

Example 2
CLIPS>

(defclass A (is-a USER)
(role concrete)
(slot x) (slot y))
CLIPS>
(defmessage-handler A init after O
(bind 7self:x 3)
(bind ?self:y 4))
CLIPS> (make-instance a of A)
[a]
CLIPS> (send [a] print)
[a] of A
x 3)
(y 4
CLIPS>

188 Section 12 - Actions and Functions

CLIPS Reference Manual

(slot x)

(multislot y (cardinality ?VARIABLE 5))

(multislot z (cardinality 3 ?VARIABLE)))
CLIPS> (deftemplate-slot-cardinality A y)

@ 5)

CLIPS> (deftemplate-slot-cardinality A z)
(3 +00)

CLIPS>

12.8.4 Testing whether a Deftemplate Slot has a Default

This function returns the symbol static if the specified slot in the specified deftemplate has a
static default (whether explicitly or implicitly defined), the symbol dynamic if the slot has a
dynamic default, or the symbol FALSE if the slot does not have a default. An error is generated
if the specified deftemplate or slot does not exist.

Syntax
(deftemplate-slot-defaultp <deftemplate-name> <slot-name>)

Example
CLIPS> (clear)

CLIPS> Sa\e .

(deftemplate A

(slot w) NO‘e
(slot x (default 7N0NE)) m
(slot y (default 1? O"
(slot z (de ensy

slot- defa w

CLIPS>

s‘@i}
CL PSX(deftemplate@)aegﬂtp A x)

FALSE

CLIPS> (deftemplate-slot-defaultp A y)
static

CLIPS> (deftemplate-slot-defaultp A z)
dynamic

CLIPS>

12.8.5 Getting the Default Value for a Deftemplate Slot

This function returns the default value associated with a deftemplate slot. If a slot has a dynamic
default, the expression will be evaluated when this function is called. The symbol FALSE is
returned if an error occurs.

Syntax

(deftemplate-slot-default-value <deftemplate-name> <slot-name>)

Example
CLIPS> (clear)
CLIPS>
(deftemplate A

200 Section 12 - Actions and Functions

CLIPS Reference Manual

(slot x (default 3))

(multislot y (default a b c))

(slot z (default-dynamic (gensym))))
CLIPS> (deftemplate-slot-default-value A x)
3
CLIPS> (deftemplate-slot-default-value A y)
(ab o)

CLIPS> (deftemplate-slot-default-value A z)
genl

CLIPS> (deftemplate-slot-default-value A z)
gen2

CLIPS>

12.8.6 Deftemplate Slot Existence

This function returns the symbol TRUE if the specified slot is present in the specified
deftemplate, FALSE otherwise.

Syntax
(deftemplate-slot-existp <deftemplate-name> <slot-name>) \)K

Example

CLIPS> (clear) \e *
CLIPS> (deftemplate A (slot x)) tesa
CLIPS> (deftemplate-slot-existp)NO Arz%

TRUE

CLIPS> (deftemplate- lo'ﬁ-(pr Ay) O
FALSE \,‘\e\N e 22’(
CLIRS>
PN pagd
12.8.7 Testing whether a Deftemplate Slot is a Multifield Slot

This function returns the symbol TRUE if the specified slot in the specified deftemplate is a
multifield slot. Otherwise, it returns the symbol FALSE. An error is generated if the specified
deftemplate or slot does not exist.

Syntax
(deftemplate-slot-multip <deftemplate-name> <slot-name>)

Example
CLIPS> (clear)
CLIPS> (deftemplate A (slot x) (multislot y))
CLIPS> (deftemplate-slot-multip A x)
FALSE
CLIPS> (deftemplate-slot-multip A y)
TRUE
CLIPS>

CLIPS Basic Programming Guide 201

CLIPS Reference Manual

CLIPS> (facts)

-0 (example fact)
For a total of 1 fact.
CLIPS> (fact-existp @)
TRUE

CLIPS> (retract 0)

CLIPS> (fact-existp ?7*x*)
FALSE

CLIPS>

12.9.8 Determining the Deftemplate (Relation) Name Associated with a Fact

The fact-relation function returns the deftemplate (relation) name associated with the fact.
FALSE is returned if the specified fact does not exist.

Syntax
(fact-relation <fact-address-or-index>)

Example
CLIPS> (clear) \(
CLIPS> (assert (example fact)) O ‘u
<Fact-0> (:;

CLIPS> (fact-relation 0)

example e
CLIPS> NO" %
1299 Deter%w‘® 16t Names sofkt% h a Fact

The f?t-s‘ot-names funcgnargs the slot names associated with the fact in a multifield
value. The symbol implied is returned for an ordered fact (which has a single implied multifield
slot). FALSE is returned if the specified fact does not exist.

Syntax

(fact-slot-names <fact-address-or-index>)

Example
CLIPS> (clear)

CLIPS> (deftemplate foo (slot bar) (multislot yak))
CLIPS> (assert (foo (bar 1) (yak 2 3)))

<Fact-0>

CLIPS> (fact-slot-names @)

(bar yak)

CLIPS> (assert (another a b ¢))

<Fact-1>

CLIPS> (fact-slot-names 1)

(implied)

CLIPS>

208 Section 12 - Actions and Functions

CLIPS Reference Manual

12.10.2 Determining the Module in which a Deffacts is Defined

This function returns the module in which the specified deffacts name is defined.

Syntax

(deffacts-module <deffacts-name>)

12.11 DEFRULE FUNCTIONS

The following functions provide ancillary capabilities for the defrule construct.

12.11.1 Getting the List of Defrules

The function get-defrule-list returns a multifield value containing the names of all defrule
constructs visible to the module specified by <module-name> or to the current module if none is
specified. If * is specified as the module name, then all defrules are returned.

Syntax
(get-defrule-list) CO .

Example O"
CLIPS> (clear) N
CLIPS> (get-defrule-lis (Om

CLIPS> (defr‘ gNi
ke ar _>)
t defr‘ule
bar)

CLIPS>

12.11.2 Determining the Module in which a Defrule is Defined

This function returns the module in which the specified defrule name is defined.

Syntax

(defrule-module <defrule-name>)

12.12 AGENDA FUNCTIONS

The following functions provide ancillary capabilities manipulating the agenda.

CLIPS Basic Programming Guide 219

CLIPS Reference Manual

<mth-restriction-class-count>
<mth-restriction-first-class>

<mth-restriction-nth-class>

Syntax
(get-method-restrictions <generic-function-name>

<method-index>)

Example
CLIPS> (clear)
CLIPS>
(defmethod foo 50 ((?a INTEGER SYMBOL) (?b (= 1 1)) $?c))
CLIPS> (get-method-restrictions foo 50)
(2 -1 3 7 11 13 FALSE 2 INTEGER SYMBOL TRUE @ FALSE 0)
CLIPS>

12.16 CLIPS OBJECT-ORIENTED LANGUAGE (COOL) FUNCTIO]B U\A

The following functions provide ancillary capablhtles for %@_\e

o\C
12.16.1 Class Functions _‘(O N ?) “ Afzg
evieW 525
12.16 P gettlng the LISQ gses

The function get-defclass-list returns a multifield value containing the names of all defclass
constructs visible to the module specified by <module-name> or to the current module if none is
specified. If * is specified as the module name, then all defclasses are returned.

Syntax
(get-defclass-1list [<module-name>])

Example
CLIPS> (clear)
CLIPS> (get-defclass-list)
(FLOAT INTEGER SYMBOL STRING MULTIFIELD EXTERNAL-ADDRESS FACT-ADDRESS INSTANCE-
ADDRESS INSTANCE-NAME OBJECT PRIMITIVE NUMBER LEXEME ADDRESS INSTANCE USER
INITIAL-OBJECT)
CLIPS> (defclass FOO (is-a USER))
CLIPS> (defclass BAR (is-a USER))
CLIPS> (get-defclass-list)
(FLOAT INTEGER SYMBOL STRING MULTIFIELD EXTERNAL-ADDRESS FACT-ADDRESS INSTANCE-
ADDRESS INSTANCE-NAME OBJECT PRIMITIVE NUMBER LEXEME ADDRESS INSTANCE USER
INITIAL-OBJECT FOO BAR)
CLIPS>

CLIPS Basic Programming Guide 227

CLIPS Reference Manual

Example
CLIPS> (class-subclasses PRIMITIVE)

(NUMBER LEXEME MULTIFIELD EXTERNAL-ADDRESS)

CLIPS> (class-subclasses PRIMITIVE inherit)

(NUMBER INTEGER FLOAT LEXEME SYMBOL STRING MULTIFIELD ADDRESS EXTERNAL-ADDRESS
FACT-ADDRESS INSTANCE-ADDRESS INSTANCE INSTANCE-NAME)

CLIPS>

12.16.1.16 Getting the List of Slots for a Class

This function groups the names of the explicitly defined slots of a class into a multifield variable.
If the optional argument “inherit” is given, inherited slots are also included. A multifield of
length zero is returned if an error occurs.

Syntax

(class-slots <class-name> [inherit])

Example
CLIPS> (defclass A (is-a USER) (slot x))

CLIPS> (defclass B (is-a A) (slot y)) u\k
CLIPS> (class-slots B) CO .
D) a\e .

CLIPS> (class-slots B inherit) EES
ik wot 79
.‘(oﬂ'\ A‘
12. 16? \@Ns\l of Me Hmrs for a Class
u

This function groups E %ss names, message names and message types of the
message-handlers attached direct to class into a multifield variable (implicit slot-accessors are
not included). If the optional argument “inherit” is given, inherited message-handlers are also
included. A multifield of length zero is returned if an error occurs.

Syntax

(get-defmessage-handler-list <class-name> [inherit])

Example
CLIPS> (clear)
CLIPS> (defclass A (is-a USER))
CLIPS> (defmessage-handler A foo (D))
CLIPS> (get-defmessage-handler-list A)
(A foo primary)
CLIPS> (get-defmessage-handler-list A inherit)
(USER init primary USER delete primary USER create primary USER print primary USER
direct-modify primary USER message-modify primary USER direct-duplicate primary
USER message-duplicate primary A foo primary)
CLIPS>

CLIPS Basic Programming Guide 231

CLIPS Reference Manual

@ 5)

CLIPS> (slot-cardinality A z)
(3 +00)

CLIPS>

12.16.1.22 Getting the Allowed Values for a Slot

This function groups the allowed values for a slot (specified in any of allowed-... facets for the
slots) into a multifield variable. If no allowed-... facets were specified for the slot, then the
symbol FALSE is returned. A multifield of length zero is returned if an error occurs.

Syntax

(slot-allowed-values <class-name> <slot-name>)

Example
CLIPS> (clear)

CLIPS>
(defclass A (is-a USER)

(slot x)
(slot y (allowed-integers 2 3) (allowed-symbols fo00))) \)K
CLIPS> (slot-allowed-values A x)

(FI/-L\IIEI§§> (slot-allowed-values A y) Sa\e *
(2 3 foo) NO‘,@

CLIPS> Om “
12.16.1.23((;@@\@“35 R f%@@ O

This fgtion groups the m@r@n d maximum numeric ranges allowed a slot into a multifield
variable. A minimum value of infinity is indicated by the symbol -00 (the minus character
followed by two lowercase 0’s—not zeroes). A maximum value of infinity is indicated by the
symbol +00 (the plus character followed by two lowercase o’s—not zeroes). The symbol FALSE
is returned for slots in which numeric values are not allowed. A multifield of length zero is
returned if an error occurs.

Syntax
(slot-range <class-name> <slot-name>)
Example
CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)
(slot x)

(slot y (type SYMBOL))
(slot z (range 3 10)))
CLIPS> (slot-range A x)
(-00 +00)
CLIPS> (slot-range A y)
FALSE

234 Section 12 - Actions and Functions

CLIPS Reference Manual

CLIPS> (slot-range A z)
G 10
CLIPS>

12.16.1.24 Getting the Default Value for a Slot

This function returns the default value associated with a slot. If a slot has a dynamic default, the
expression will be evaluated when this function is called. The symbol FALSE is returned if an
eITor Occurs.

Syntax

(slot-default-value <class-name> <slot-name>)

Example
CLIPS> (clear)
CLIPS>
(defclass A (is-a USER)
(slot x (default 3))
(multislot y (default a b c))

(slot z (default-dynamic (gensym)))) O \)K

CLIPS> (slot-default-value A x) .

C
2LIPS> (slot-default-value A y) Sa\e *

(ab o)

;(I;;[]ES> (slot-default-value 5m N “ Az%
CLIPS> (slot-‘defaw '&x /L

genZ e\,\ e 26

Py pad
12.16.1.25 Setting the Defaults Mode for Classes

This function sets the defaults mode used when classes are defined. The old mode is the return
value of this function.

Syntax

(set-class-defaults-mode <mode>)

where <mode> is either convenience or conservation. By default, the class defaults mode is
convenience. If the mode is convenience, then for the purposes of role inheritance, system
defined class behave as concrete classes; for the purpose of pattern-match inheritance, system
defined classes behave as reactive classes unless the inheriting class is abstract; and the default
setting for the create-accessor facet of the class’ slots is read-write. If the class defaults mode is
conservation, then the role and reactivity of system-defined classes is unchanged for the purposes
of role and pattern-match inheritance and the default setting for the create-accessor facet of the
class’ slots is 7NONE.

CLIPS Basic Programming Guide 235

CLIPS Reference Manual

12.16.2.2 Calling Shadowed Handlers

If the conditions are such that the function next-handlerp would return the symbol TRUE, then
calling this function will execute the shadowed method. Otherwise, a message execution error
(see section 9.5.4) will occur. In the event of an error, the return value of this function is the
symbol FALSE, otherwise it is the return value of the shadowed handler. The shadowed handler
is passed the same arguments as the calling handler.

A handler may continue execution after calling call-next-handler. In addition, a handler may
make multiple calls to call-next-handler, and the same shadowed handler will be executed each
time.

Syntax
(call-next-handler)

Example
CLIPS> (clear)

CLIPS> (defclass A (is-a USER) (role concrete))
CLIPS> u\(
(defmessage-handler A print-args ($?any) O .
(printout t "A: " ?any crlf) \e ‘C
(if (next-handlerp) then Sa

(call-next-handler)))
CLIPS> $ %
(defmessage-handler USE Gw 7any) AZ
(printout t "USE B 'E?))
CLIPS> (make \reba\l
@ [a] pr' g% 4)
(123 4)

USER (1234
CLIPS>

12.16.2.3 Calling Shadowed Handlers with Different Arguments

This function is identical to call-next-handler except that this function can change the
arguments passed to the shadowed handler.

Syntax

(override-next-handler <expression>*)

Example

CLIPS> (clear)

CLIPS> (defclass A (is-a USER) (role concrete))

CLIPS>

(defmessage-handler A print-args ($?7any)
(printout t "A: " ?any crlf)
(if (next-handlerp) then

(override-next-handler (rest$?any))))

CLIPS Basic Programming Guide 237

CLIPS Reference Manual

Syntax

(apropos <lexeme>)

Example
CLIPS> (apropos pen)
dependents
mv-append
open
dependencies
CLIPS>

13.2 DEBUGGING COMMANDS

The following commands control the CLIPS debugging features.

13.2.1 Generating Trace Files

wwarning, wtrace, and stdout to <file-name> as well as to thelr stination.
Additionally, all information received from logical name stdin\i gl t0 <file-name> as
well as being returned by the requesting function. Tl{é@ tns TRUE if the dribble file

was successfully opened, otherwise FAiI:(S-Ii i Al%
Syntax “

(dribble-o 1@&; 28& O
13.2 ZEosmg Trace Fil ? g

Stops sending trace information to the dribble file. This function returns TRUE if the dribble file
was successfully closed, otherwise FALSE is returned.

Sends all information normally sent to the logical names wclips, wdialog, wm werror,

Syntax
(dribble-off)

13.2.3 Enabling Watch Items

This function causes messages to be displayed when certain CLIPS operations take place.

Syntax
(watch <watch-item>)
<watch-item> ::= all |
compilations |
statistics |
focus |

CLIPS Basic Programming Guide 255

CLIPS Reference Manual

This command displays the current state of all watch items. If called without the <watch-item>
argument, the global watch state of all watch items is displayed. If called with the <watch-item>
argument, the global watch state for that item is displayed followed by the individual watch
states for each item of the specified type which can be watched. This function has no return
value.

Example
CLIPS> (list-watch-items)
facts = off
instances = off
slots = off
rules = off
activations = off
messages = off
message-handlers = off
generic-functions = off
methods = off

deffunctions = off

compilations = on

statistics = off

globals = off K
focus = off u

cO-

CLIPS> (list-watch-items facts)

facts = off \e *
MAIT;itial-fact = off "esa
CLIPS> (Om NO _‘ A’Z%

133 Ev@ﬂ)@ Cco %ﬁ@ 2

The following commands nmlanipulate deftemplates.

13.3.1 Displaying the Text of a Deftemplate

Displays the text of a given deftemplate. This function has no return value.

Syntax
(ppdeftemplate <deftemplate-name>)

13.3.2 Displaying the List of Deftemplates

Displays the names of all deftemplates. This function has no return value.

Syntax
(list-deftemplates [<module-name>])

If <module-name> is unspecified, then the names of all deftemplates in the current module are
displayed. If <module-name> is specified, then the names of all deftemplates in the specified

258 Section 13 - Commands

CLIPS Reference Manual

13.7 AGENDA COMMANDS

The following commands manipulate agenda.

13.7.1 Displaying the Agenda

Displays all activations on the agenda. This function has no return value.

Syntax

(agenda [<module-name>])

If <module-name> is unspecified, then all activations in the current module (not the current
focus) are displayed. If <module-name> is specified, then all activations on the agenda of the
specified module are displayed. If <module-name> is the symbol *, then the activations on all
agendas in all modules are displayed.

13.7.2 Running CLIPS \4
Starts execution of the rules. If the optional first argument is @Qon will cease after
the specified number of rule firings or when the age @ﬁ STule activations. If there are

no arguments or the first argument is a neg execu ill cease when the agenda

contains no rule activations. lf@ ckis empty, L&e Ae module is automatically
becomes the currept fo (¢ itional effect if evaluated while rules

om
are executmg?& he number rq d"and timing information is no longer printed
after t tion of th % unless the statistics item is being watched (see section
13.2). It the rules item is bding watched, then an informational message will be printed each time
a rule is fired. This function has no return value.

Syntax

(run [<integer-expression>])

13.7.3 Focusing on a Group of Rules

Pushes one or more modules onto the focus stack. The specified modules are pushed onto the
focus stack in the reverse order they are listed. The current module is set to the last module
pushed onto the focus stack. The current focus is the top module of the focus stack. Thus (focus
A B C) pushes C, then B, then A unto the focus stack so that A is now the current focus. Note
that the current focus is different from the current module. Focusing on a module implies
“remembering” the current module so that it can be returned to later. Setting the current module
with the set-current-module function changes it without remembering the old module. Before a
rule executes, the current module is changed to the module in which the executing rule is defined
(the current focus). This function returns a boolean value: FALSE if an error occurs, otherwise
TRUE.

268 Section 13 - Commands

CLIPS Reference Manual

Syntax

(mem-requests)

13.13.3 Releasing Memory Used by CLIPS

Releases all free memory held internally by CLIPS back to the operating system. CLIPS will
automatically call this function if it is running low on memory to allow the operating system to
coalesce smaller memory blocks into larger ones. This function generally should not be called
unless the user knows exactly what he/she is doing (since calling this function can prevent
CLIPS from reusing memory efficiently and thus slow down performance). This function returns
an integer representing the amount of memory freed to the operating system.

Syntax

(release-mem)

13.13.4 Conserving Memory

Turns on or off the storage of information used for save and pretty pﬁ)@mﬁ“ This can
save considerable memory in a large system. It should be callﬁ @r ading any constructs.
This function has no return value.

o\C

(COI’]SEI"VG mem <VC|

where@* ee\ler on or@ age

13.14 ON-LINE HELP SYSTEM

CLIPS provides an on-line help facility for use from the top-level interface. The help system uses
CLIPS’ external text manipulation capabilities (see section 13.15). Thus, it is possible to add or
change entries in the help file or to construct new help files with information specific to the
user’s system.

13.14.1 Using the CLIPS Help Facility

The help facility displays menus of topics and prompts the user for a choice. It then references
the help file for that information. The help facility can be called with or without a command-line
topic.

Syntax
(help [<path>])

286 Section 13 - Commands

CLIPS Reference Manual

e Metrowerks CodeWarrior 9.6 for Mac OS X.

e Xcode 2.3 for Mac OS X.

¢ Microsoft Visual C++ .NET 2003 for Windows.

B.3 VERSION 6.23

302

Fact-Set Query Functions — Six new functions similar to the instance set query functions
have been added for determining and performing actions on sets of facts that satisfy
user-defined queries (see section 12.9.12): any-factp, find-fact, find-all-facts, do-for-fact,
do-for-all-facts, and delayed-do-for-all-facts. The GetNextFactinTemplate function (see
section 4.4.17 of the Advanced Programming Guide) allows iteration from C over the facts
belonging to a specific deftemplate.

Bug Fixes - The following bugs were fixed by the 6.23 release: u\‘

e Passing the wrong number of arguments to a de mugh the funcall function
could cause unpredictable behavior i 1 corru gon
e Alarge frle nam \eﬁ “ @ acters)gass@ﬁto ctch command causes a buffer

overrun

?A‘arge file nam@aa 60 characters) passed into the constructs-to-c command
causes a buffer overrun.

A large defclass or defgeneric name (at least 500 characters) causes a buffer overrun
when the profile-info command is called.

A large module or construct name (at least 500 characters) causes a buffer overrun when
the get-<construct>-list command is called.

The FalseSymbol and TrueSymbol constants were not defined as described in the
Advanced Programming Guide. These constants have have now been defined as macros
so that their corresponding environment companion functions (EnvFalseSymbol and
EnvTrueSymbol) could be defined. See the Advanced Programming Guide for more
details.

The slot-writablep function returns TRUE for slots having initialize-only access.

Appendix B — Update Release Notes

CLIPS Reference Manual

conditional
element

conflict resolution
strategy

consequent

constant

constraint

construct

A restriction on the LHS of a rule which must be satisfied in order
for the rule to be applicable (also referred to as a CE).

A method for determining the order in which rules should fire
among rules with the same salience. There are seven different
conflict resolution strategies: depth, breadth, simplicity,
complexity, lex, mea, and random.

The RHS of a rule.

A non-varying single field value directly expressed as a series of
characters.

In patterns, a constraint is a requirement that is placed on the value
of a field from a fact or instance that must be satisified in order for
the pattern to be satisfied. For example, the ~re traint is
satisfied if the field to which the constra1 ‘AL&I iS not the
symbol red. The term constralnt 1 u,s to refer to the legal
d instances.

rAsZ—% add components to the

values allowed 1§
A{&g(?éﬁ\c PS abs
\Nkn le geb

\S

curre? e P‘@(@@: from which activations are selected to be fired.

current module

The module to which newly defined constructs that do not have a
module specifier are added. Also is the default module for certain
commands which accept as an optional argument a module name
(such as list-defrules).

daemon A message-handler which executes implicitly whenever some
action is taken upon an object, such as initialization, deletion, or
slot access.

deffunction A non-overloaded function written directly in CLIPS.

deftemplate fact A deftemplate name followed by a list of named fields (slots) and
specific values used to represent a deftemplate object. Note that a
deftemplate fact has no inheritance. Also called a non-ordered
fact.

deftemplate object An informal term for the entity described by a deftemplate. A

316 Appendix C - Glossary

CLIPS Reference Manual

fact-index
fact-list
field

fire

float

focus

focus stack

previet

function

generic dispatch
generic function

inference engine

318

character “f”, followed by a dash, followed by the fact-index of
the fact.

A unique integer index used to identify a particular fact.
The list of current facts.
A placeholder (named or unnamed) that has a value.

A rule is said to have fired if all of its conditions are satisfied and
the actions then are executed.

A number that begins with an optional sign followed optionally in
order by zero or more digits, a decimal point, zero or more digits,
and an exponent (consisting of an e or E followed by an integer).
A floating point number must have at least one digit in it (not
including the exponent) and must either contain a dec point or
an exponent (see section 2.3.1 for more det d

As a verb, refers a}rent focus. As a noun, refers
to the cu ‘%\foﬁ AZ%
NNE LA

been focused upon. The module at

the t S stack is the current focus. When all the
P from the current focus have been fired, the current
focus is removed from the focus stack and the next module on the

stack becomes the current focus.

A piece of executable code identified by a specific name which
returns a useful value or performs a useful side effect. Typically
only used to refer to functions which do return a value (whereas
commands and actions are used to refer to functions which do not
return a value).

The process whereby applicable methods are selected and
executed for a particular generic function call.

A function written in CLIPS which can do different things
depending on what the number and types of its arguments.

The mechanism provided by CLIPS which automatically matches
patterns against the current state of the fact-list and list of
instances and determines which rules are applicable.

Appendix C - Glossary

CLIPS Reference Manual

Appendix E - Performance Considerations

This appendix explains various techniques that the user can apply to a CLIPS program to
maximize performance. Included are discussions of pattern ordering in rules, use of deffunctions
in lieu of non-overloaded generic functions, parameter restriction ordering in generic function
methods, and various approaches to improving the speed of message-passing and reading slots of
instances.

E.1 ORDERING OF PATTERNS ON THE LHS

The issues which affect performance of a rule-based system are considerably different from
those which affect conventional programs. This section discusses the single most important
issue: the ordering of patterns on the LHS of a rule.

CLIPS is a rule language based on the RETE algorithm. The RETE algorithm was designed
specifically to provide very efficient pattern-matching. CLIPS has attempted to implement this
algorithm in a manner that combines efficient performance with powerful featﬁ hen used
properly, CLIPS can provide very reasonable performance, eve rs. However,
to use CLIPS properly requires some understanding of h @A “matcher works.

Prior to initiating execution, each rﬁﬂ%d&@the s§ %etwork of all patterns that
ted

appear on the LHS of an e‘ nces of reactive classes (referred
to collectively \Jﬁtles) are crea%h S;%r tered through the pattern network. If the
patter @SJ any @ e network, the rules associated with those patterns
are pa 1ally instantiated. ba rn entities exist that match all patterns on the LHS of the
rule, variable bindings (if any) are considered. They are considered from the top to the bottom:;
i.e., the first pattern on the LHS of a rule is considered, then the second, and so on. If the variable
bindings for all patterns are consistent with the constraints applied to the variables, the rules are
activated and placed on the agenda.

This is a very simple description of what occurs in CLIPS, but it gives the basic idea. A number
of important considerations come out of this. Basic pattern-matching is done by filtering through
the pattern network. The time involved in doing this is fairly constant. The slow portion of basic
pattern-matching comes from comparing variable bindings across patterns. Therefore, the single
most important performance factor is the ordering of patterns on the LHS of the rule.
Unfortunately, there are no hard and fast methods that will always order the patterns properly. At
best, there seem to be three “quasi” methods for ordering the patterns.

1) Most specific to most general. The more wildcards or unbound variables there are in a
pattern, the lower it should go. If the rule firing can be controlled by a single pattern, place
that pattern first. This technique often is used to provide control structure in an expert
system; e.g., some kind of “phase” fact. Putting this kind of pattern first will guarantee that

CLIPS Basic Programming Guide 327

CLIPS Reference Manual

Example:
CLIPS> (defrule foo (a ~?x) =>)

[ARGACCESI1] Function <name> expected at least <minimum> and no more than
<maximum> argument(s)

This error occurs when a function receives less than the minimum number or more than the
maximum number of argument(s) expected.

[ARGACCES2] Function <function-name> was unable to open file <file-name>
This error occurs when the specified function cannot open a file.

[ARGACCES3] Function <namel> received a request from function <name2> for
argument #<number> which is non-existent
This error occurs when a function is passed fewer arguments than were expected.

[ARGACCES4] Function <name> expected exactly <number> argument(s)
This error occurs when a function that expects a precise number of argument(s ceives an
incorrect number of arguments.

[ARGACCES4] Function <name> expected at least <n|5n A@gnment(s)
This error occurs when a function does not ber of argument(s) that it
expected. N "g‘

[ARGACCES4] F‘&E‘ e> expe%(@@ an <number> argument(s)
This a functi 1 ore than the maximum number of argument(s)

expe:? ‘Oel (g@

[ARGACCESS] Functlon <name> expected argument #<number> to be of type
<data-type>
This error occurs when a function is passed the wrong type of argument.

[ARGACCESG6] Function <namel> received a request from function <name2> for
argument #<number> which is not of type <data-type>

This error occurs when a function requests from another function the wrong type of argument,
typically a string or symbol, when expecting a number or vice versa.

[BLOAD1] Cannot load <construct type> construct with binary load in effect.
If the bload command was used to load in a binary image, then the named construct cannot be
entered until a clear command has been performed to remove the binary image.

[BLOAD?2] File <file-name> is not a binary construct file
This error occurs when the bload command is used to load a file that was not created with the
bsave command.

334 Appendix G - CLIPS Error Messages

CLIPS Reference Manual

Example:
CLIPS> (deftemplate foo (slot x (type SYMBOL)))
CLIPS> (assert (foo (x 3)))

[CSTRNPSR1] The <first attribute name> attribute conflicts with the <second attribute
name> attribute.
This error message occurs when two slot attributes conflict.

Example:
CLIPS> (deftemplate foo (slot x (type SYMBOL) (range @ 2)))

[CSTRNPSR2] Minimum <attribute> value must be less than

or equal to the maximum <attribute> value.

The minimum attribute value for the range and cardinality attributes must be less than or equal to
the maximum attribute value for the attribute.

Example
CLIPS> (deftemplate foo (slot x (range 8 1))) K

[CSTRNPSR3] The <first attribute name> attribute ca ﬁ@edﬁ COIlJllIlCthIl with
the <second attribute name> attribute. g

The use of some slot attributes exclude {ﬁ wer slot a&iz%
Example: "(O @

CL S Q’eket foo (sl (a values a)

@ 6 (allowed-symbols b)))

[CSTRNPSR4] Value does not match the expected type for the <attribute name> attribute.
The arguments to an attribute must match the type expected for that attribute (e.g. integers must
be used for the allowed-integers attribute).

Example:
CLIPS> (deftemplate example (slot x (allowed-integers 3.0)))

[CSTRNPSRS] The cardinality attribute can only be used with multifield slots.
The cardinality attribute can only be used for slots defined with the multislot keyword.

Example:
CLIPS> (deftemplate foo (slot x (cardinality 1 1)))

[DEFAULT1] The default value for a single field slot must be a single field value
This error occurs when the default or default-dynamic attribute for a single-field slot does not
contain a single value or an expression returning a single value.

Example:
CLIPS> (deftemplate error (slot x (default)))

340 Appendix G - CLIPS Error Messages

CLIPS Reference Manual

[MSGPASS3] Static reference to slot <name> of class <name> does not apply to
<instance-name> of <class-name>.

This error occurs when a static reference to a slot in a superclass by a message-handler attached
to that superclass is incorrectly applied to an instance of a subclass which redefines that slot.
Static slot references always refer to the slot defined in the class to which the message-handler is
attached.

Example:
CLIPS>
(defclass A (is-a USER)
(slot foo0))
CLIPS>
(defclass B (is-a A)
(role concrete)
(slot foo0))
CLIPS>
(defmessage-handler A access-foo ()
?self:foo)
CLIPS> (make-instance b of B)
[b]

CLIPS> (send [b] access-foo) uK
cO-

[MSGPSR1] A class must be defined before its mess. ga\@
A message-handler can only be attached to aN é %
Example: x " A‘Z

CLIPS> (de{nﬁs@ d1®r* bogus- q?) (
[MS @annot (re) @l@%e handlers during execution of other
message-handlers for the $ame class.

No message-handlers for a class can be loaded while any current message-handlers attached to
the class are executing.

Example:
CLIPS> (defclass A (is-a USER))
CLIPS> (make-instance a of A)
[a]
CLIPS>
(defmessage-handler A build-new ()
(build "(defmessage-handler A new (O)"))
CLIPS> (send [a] build-new)

[MSGPSR3] System message-handlers may not be modified.
There are four primary message-handlers attached to the class USER which cannot be modified:
init, delete, create and print.

Example:
CLIPS> (defmessage-handler USER init ())

360 Appendix G - CLIPS Error Messages

CLIPS Reference Manual

Appendix I - Reserved Function Names

This appendix lists all of the functions provided by either standard CLIPS or various CLIPS
extensions. They should be considered reserved function names, and users should not create

user-defined functions with any of these names.

I=
k

kK

+

>=
abs

acos

acosh

acot

acoth

acsc e\,
acsch P (
active-duplicate-instance
active-initialize-instance
active-make-instance

e |

pagd©

active-message-duplicate-instance
active-message-modify-instance

active-modify-instance
agenda

and
any-instancep
apropos

asec

asech

asin

asinh

assert
assert-string
atan

CLIPS Basic Programming Guide

atanh

batch

batch*

bind

bload
bload-instances
break
browse-classes
bsave
bsave-instances
build
call-next-handler
call- next met
c _

class—ﬁx A'i%

cO oK

aciass -reactivep

class-slots
class-subclasses
class-superclasses
clear
clear-focus-stack
close
conserve-mem
constructs-to-c
cos

cosh

cot

coth

create$

csc

csch
defclass-module
deffacts-module
deffunction-module

379

CLIPS Reference Manual

bSAVE-INSLANCESeeevvvvvvirieeeeeeeeeeeiiiannn, 284
BUild .o 165, 303
Coaee e, i, 7,9, 12, 15,16, 21
call-next-handler 82,113, 114,237
call-next-method 81, 82, 85,224, 225
call-specific-method.............. 75, 82, 85, 225
CAITIAZE TELUIM .eeveeeeeeeeiiiireeeeeeeeeniinneeeeeenss 7
CASE SENSILIVE .vvvvveeneeeeeiirriiiiieeeeeeeeeeeeriinnens 7
check-Syntaxcccoeeeevvviveeeeeennnns 167,307
class ...cveeeeeeeeiiiiinnns 8,13, 78,240,276, 278
abstract.......ccoeeveveeeennnnn. 87,92, 235,276
CONCIELE ..euneeeneeeeeeeeeeeeeneannnn 88,92, 235
EXISEENCE .uvveeiivvvirieee e 227
IMMEdIALE ..ovvneveneeeeeeeeeeeeeenn, 92,103
NON-TEACLIVE ...coeviiiveiiiiieeeeeeeeeeeeiiiinnnn, 92
Precedenceooeevvvvuiiiiiieeeiinnniiiee 90
TEACTIVE wevneeeeeeeeeeeeeeeeeeenenn 88,92, 235
SPECIfiC.uuiirreeriniiiiiieeenn. 90,92,97, 113
SYSEEIM .vvveeeeeeeeeeiiiireeeeeeeeeerierrreeeaens 87

class-subclasses.......eeeeeeeiiiiiiiiiiieeeeeenn, 230
class-superclasses.......ccccveeeeeeecnereveeeennnn. 230
clearll, 25, 67,118, 137, 139, 143, 250, 251
clear-focus-stackcccoeeeeiiiiiiiiiiniennennn. 270
(@)] 1 A SR 11l
CLIPSFunctionCall................ 310,311, 312
CLOS ..o, 75,87
ClOSE ..o 170
commaNndoeeeeueeeneeeiieeeieannn, 3,151, 249
command PrompPteeeeeeeeeeeuvrreeeeeeeennnns 3
COIMIMENT ..vevnteeneeeeeeeeee e et et eeeeeeneens 7,10
Common Lisp Object System.................... v
[o70) 1 T¢ 115 o) 1 H 15
conditional element........... 15, 25,27, 33,63
ANd oo, 27,33,52
EXISES teneeen ettt eanans 33,54
forallovveeeeviiiiiiiiiiee e g N 33,56
logical, G‘u 33,58
G 33,53

EXTERNAL-ADDRESS............. NO‘— patte % 27,33
FACT-ADDRESS _‘() rz\;&a 27,52,53

FLOAT»..

Apengiee ggeA’ZO

INSTANCE-ADDRESS............... 87
INSTANCE-NAMEcceuee. 87
INTEGERccoociiiiiiiiiieeie, 87
LEXEMEcccoooviiiiiiieiniieeien, 87
MULTIFIELD.......cccccceevviirannennn. 87
NUMBERcoooviiiiiiiiieeie, 87
OBJECT ..., 87,90, 278
PRIMITIVEcccocoiiiiiiiiiiiien, 87
STRINGoiieiiieeieeeee e 87
SYMBOL......ccoovieiieiiieeee 87
USER...... 87,90, 108, 119, 239, 283
user-definedooooeeeeeveiineeiinnn. 8,282
user-definedccccceeeeeeecinnennnnnnn. 13
class functionccoeeeeveveveneeeennnennn. 223,240
class-abstractp......cceeeeeeevivieeeeeeeeeeeiee 229
ClaSS-EXISIP .evvvrrrreeeeeeriiiiiireeeeeeeeeeeneennes 228
Class-TEACHIVED ..eeevvvveeeeeiiiiieeeeeeeeeiieenee 230
Class-SIOtSoeeiviiiiiiiiiiiiee e, 231

394

conflict resolution strategy ...15, 28, 29, 251,
269

breadthcoeeeeviiiiiiiieee, 29
COMPIEXItY cooveeiiiiiiiieeeee e, 30
depth ..oovveeieeiii 29
LEX e 30
10112 R RURR 31
221116 (0] 4 LR 31
SIMPLCILY voooeiiiiiieeeeeeeeeiiiieeee e 29
(o0) 1 <10 |1 33| AU 15
CONSETVALIONcoeevvvviiiieeeeeeeeeeeiiie e 235
CONSETVE-MEMcevvvvennreeenrrrrrrannnn. 250, 286
CONSTANT ceeveeeeeeeee et e e e et e e e e e eeanass 3,8
(1) 111 ¥2 11 1| SO 33,40, 43
CONNECHIVE ..veveneeeieeeeeeeeeeeeeeeenenen. 34,40
field...oooveeieeeec e, 33
Literal.......ooovvvimeeeeieieiiiieeee e 34
predicate........occveeeiiniiieeennnnne. 34,43, 49
Index

CLIPS Reference Manual

direct...cccoueeeeeiiiiieeeeeee, 87, 88,92,96
initialization 108, 115, 118,239
manipulationcceeeeeviiiieeeeenennn. 115
025011501 V-SSR UUURPR 110

instance-address ... 6, 8,9, 49, 171, 240, 241,
329

instance-addresspooecvvviieeeeeeeeiiinnnee, 241
INStANCE-EXISLP vevvveeereeriiiiiiieeeeeeeeeiieenee 242
INSEANCE-LISteuneveeeein e 14,27
instance-name 6,8, 129, 240, 241
INStANCE-NAMED ..eeeveeeeneriiiireeeeeeeeeeeennee 242
instance-name-to-symbol 241
INSEANCEP c.vvevvivirieeeeeeeeeiirieeeee e e e e 241
INSTANCES ...oeeeivvvvviieeeeeeeeeeevieeeeeeeeeeeenns 282
INSTANCE-SEL ...ovvvvvrreeeeeeeeieiriiiieeeeeeeeeeennns 128
F2Te15 (0 o AU 132
class restriction.........cceeeeeeeeeeiivevvennnnn. 128
distributed action.............ccoevvvvvvvnnnnn. 131
11015310101 S 128
member variable.........c............. 129, 132

QUETY ceeeevirreeeeeeeeeanns 19,130, 132, 329
query execution error _‘(6 32

111 (STS(S) § 0 BTSRRI SUPURURR 151
11 (T4 215 () 1 DO PR 5
Interfaces GUIdE.......oevvuveenveeieeeeeeennn.. v,3
R 5
left-hand Sideccoeeeeeiiiiiiviiiiiieeieeeeeieeen, 15
length......ccociiiiieieeiieee e 196
length$.....ccovvveiviiiiieen. 93, 105, 162, 196
lesS thancevvveeeiiiiiiiiiiieee e, 7
124531115 o S UUURR 152
LHS oo, 27
line feed......cccvvvveeiiiiiiiee e, 7
LISP oo i, 15
list-defclasses.....covveevvieiiiiieiiiieeieeeeeiiennns 276
list-deffactscveeeeveiiiiiiiiiieeeeeeeeeeeias 262
list-deffunctionsoevvvveeereeeeninnnnns 272
list-defgenerics.......coeevuvvvviieeeeeeeeeeinee, 273
list-defglobalscccoeevriiiiieiiiiniie, 271
list-definsStancescovvvvvvveeereeeeniinnnns 282

398

list-defmessage-handlers 280
list-defmethods.................... 77,82,274,275
list-defmodules........ccooeeeviiiiiiiiiiriienneenn. 285
list-defrulescooovvvvrreeeeeeiiiiieiiieeeeee, 263
list-deftemplates.........ccccceeeeeeevininieennnn. 258
list-fOCcuS-Stackveeeeeiiiiiiiiiieeeeennn, 269
list-watch-1temsccooeeeeeeeiiiiiiiiieeneenn, 257
1oadovvveeeiiieiiiiiaas 5,249, 250, 252
10ad™ ..o 249,310
10ad-TaCLS ..evveeeeeeeeeee e 260,311
LoadFactsFromString.........ccccccceeeeunnneee. 304
load-instances..........cceeeeeeune.... 284, 309, 310
Jocal ..o 260
JOZ ettt 186
1OZ10 it 186
logical name..........cccceeeeeeeeeennnnnnne. 168, 255
Nl N 171,173
stdin 169¢7®1M 177,255
stdout \e 169, 171, 173, 255
tes 169, 171,172,173, 176, 177
O Wiips,. .~ o T — 169, 255
dﬁ:al&fl 169, 255
A_ T ST 169, 255
AU § (0) 169, 255
WATACE ..un v 169, 255
WWAINING .oeoeeiviiiieeeeeeeeeeeeene 169, 255
logical support................... 58, 204, 205, 267
loop-for-court................ 82,190, 192, 247,314
JOWCASE evvveeeieeeeiieeieee e 166
make-instance 8,47,82,92,94, 96, 101,
108,115, 117,239, 284, 311
IMALCHES e 63,264
math functionsS......cccceeeveveveeeeennnennn. 178, 182
10 T2) GO RRRRTRN 181
max-number-of-elements 148
memberSooovvveeieeeeeeeeeeee 158, 303, 309
MEM-TEQUESES ..evveeeererriiirrrreeeeeeeeennnneennes 286
MEM-USE.......oovviriieeeeeeiiiiiriiieeeeeeeeeeeenns 285

message.14, 16,17, 18,75, 87, 94, 103, 105,
112, 113,114,115, 116, 119

dispatCh.......cooveviiiiiiieeeieeeeee, 104

execution error 105, 114, 237

E€XECULION EITOT .uvvviivneneeiiieeeeennnnne. 114
Index

CLIPS Reference Manual

Symbolcooviiiiiiiniiienen, 6,7, 8,240,241
TESETVEd...ueiiiiiieeeeeeeeeiiieee e e 12
andoooviiiiiiiiii 12
declare.......ccoeeeeeeiiiiiieieeeeeee 12

EXISES uvvvririireeeeeeriirree e e e e e e e 12

forallccoeeveeeiiiiiiieeeeeeee 12

logicalcoovvviieiiiiiiieeeeeee 12

110 PP 12

0] 0 [1¢] AP 12

[0 PP 12

L1 ARSI 12
SYMDBOIP .o 152
symbol-to-instance-name 240
SYMI=CAL .evvvivireeeeeeeeriiiirreeeeeeeeeeeneanreeeeeens 164
SYSEEIM ..ueeviiiieeeeeeeeriiiirreeeeeeeesenearreeeeeens 253
taAD e 7,171,309
121 | DU PUPPRRR 183
121 11§ F U PPPPPRR 183
teMPlate ...cooeeiiiiiiieee e 205
then portion..........ceeeeeeeevciiieeeeeeeeeeeeeee 15

CLAE e,

time _‘(6

timeroovvvveeen. ’.. Nl..YY T 9
timer P\ \e\'\l (Af

XY 5308

1701 UUUUURRRPR. SURUPPPRPRPR 292
trigonometric math functions 182
TrueSymbolccceeveeiiiiiiiiiiiieeeeeees 302
truth maintenance............ccccveeeeeeeeeennnnee. 58
type function........cccceeeeeeeenvnvneennnn. 223,240
unconditional sSUppOrt.........ccceeeeeeeerennnnnee. 58
undefclassoocevvvviiiieeiieieeeees 276
undeffactscccvvvvveeeeiiieiee e, 262
undeffunction.........cccceeeeveeciiiiiiieeeeeennns 273
UNdefgenericuvveeeeeeeerieciiiiiieeeee e 274
undefglobalccccccoeviinniiiiienn. 67,271
undefinsStancescccceeveeeeeiiiiieeeeeeeennnns 282

402

undefmessage-handler............................ 280
undefmethodcccoeeveiiiiiiiiiiiiiiiieniien, 274
undefrule.......coooovviiieiiiiiiin 139, 263
undeftemplate...........coocvviieeeeeeieniine, 259
unmake-instancecoeeeeveevunnnnenns 49,239
UNWALCH. .., 257,310
UPCASE ceeeeeeveirrreeeeeeeeannrerrreeeeeeeesnnnnnnnnes 166
UsSer’s GUIAE ..coeveeeenneeeeeeeeeeeeeeeeeen, v, vil
USEr-fUNCHIONS.....vvveeeieeeiiiiiiiiieee e, 293
VaAIUE c.ovvviiieee e 9

187

global 3,14,64, 67, 188, 251
vertical bar...........oevvvveeeiiiiiiie 7
VISIDIE vvvviieeeeeiiiieeeee e 260
VEAD cooeee e, 171, 309
watch ,257,313

focus .. 256
generic-functions...........oeeeevvvveeeennn. 256
globalS.......ccovevviiiiiiiieeeeeee, 67,256
INSTANCES ...evvvvvieeeeeeeieeeeirieeeeeeeeeenenns 257
message-handlerscccceeeeennnnne. 257
INESSAZES wvvvveeeeeeeerinnrrrrreeeeeeeennnennnennns 257
MEthOASvveeeiiiiiiiiiieeeeeeeeeeei, 256
TUIES oo 256, 268
] (0] £ U 257
StAtISTICS...ccevvvrrriieeeeeeeeeeeeriaannn, 256, 268
while........vveeeeiiiiiiiiiiiinn, 82,190, 247, 314
wildcardooveveeeeeeiieeeeeeeeen. 33,34, 36
WOTAD ettt 152
Index

