HYPERBOLAS

A hyperbola provides an amazing context as we learn the different examples of equations and graphs. Its equation may have similarities to the equation of the ellipse except for the sign.

Standard Equation: (Transverse Axis is horizontal)

EQUATIONS AND GRAPHS

07/31/202

The coordinates of the foci are (h, k+c), which is $(2, -3+\sqrt{33})$ and (h, k-c) which is $(2, -3-\sqrt{33})$ C. 5. Step 1. $\frac{(x-4)^2}{25} - \frac{(y+6)^2}{9} = 1$ to $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{h^2} = 1$ Step 2. $\frac{(x-4)^2}{r^2} - \frac{(y+6)^2}{r^2} = 1$ h = 4 k = -6 a = 5b = 3 $c^2 = a^2 + b^2 = 25 + 9 =$ Notesale.co.uk $c = \sqrt{34}$ Answer: The set **e**) is (h, k), and it is (4, -6) **C** The vertices are (1 - 2a, k), so these are $(4 + 5, -6) \rightarrow$ (9, -6) and $(2 - 5, -6) \rightarrow (-1, -6)$ The co-vertices are (h, $k \pm b$), so these are (4, -6+3) \rightarrow (4, -3), and $(4, -6-3) \rightarrow (4, -9)$ The length of transverse axis is 2a, so it is 2(5) = 10 units The length of the conjugate axis is 2b, so it is 2(3) = 6 units The foci are $(h \pm c, k)$, so these are $(4+\sqrt{34}, -6)$, and $(4-\sqrt{34}, -6).$ The asymptotes are y - k = $\pm \frac{b}{a}(x - h)$, so these are $y + 6 = \frac{3}{r}(x - 4) \rightarrow y = \frac{3}{r}(x - 4) - 6$, and $y + 6 = -\frac{3}{r}(x - 4)$ → $y = -\frac{3}{r}(x-4) - 6$ 6. Step 1. $\frac{(y-8)^2}{81} - \frac{(x+1)^2}{121} = 1$ to $\frac{(y-k)^2}{x^2} - \frac{(x-h)^2}{h^2} = 1$