HYPERBOLAS

A hyperbola provides an amazing context as we learn the different examples of equations and graphs. Its equation may have similarities to the equation of the ellipse except for the sign.

Standard Equation: (Transverse Axis is horizontal)

$$
\text { a. } \quad \frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Where $\quad(\mathrm{h}, \mathrm{k})$ is the center of the hyperbola, and $\mathrm{a}>\mathrm{b}$
($h \pm a, \mathrm{k}$) are the coordinates of the vertices
(h, $k \pm b$) are the coordinates of the co-wettes
$2 a$ is the length of the trangher
2 b is the le d of the coniugte axis
preview
Page

$$
\text { Where } c^{2}=a^{2}+b^{2}
$$

GRAPH

- The coordinates of the foci are ($\mathrm{h}, \mathrm{k}+\mathrm{c}$), which is ($2,-3+\sqrt{\mathbf{3 3}}$) and ($\mathrm{h}, \mathrm{k}-\mathrm{c}$) which is $(2,-3-\sqrt{\mathbf{3 3}}$)
C.

5. Step 1. $\frac{(x-4)^{2}}{25}-\frac{(y+6)^{2}}{9}=1$ to $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$

Step 2. $\frac{(x-4)^{2}}{5^{2}}-\frac{(y+6)^{2}}{3^{2}}=1$

$$
\begin{array}{lll}
\mathrm{h}=4 \quad \mathrm{k}=-6 & \mathrm{a}=5 & \mathrm{~b}=3 \\
\mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2} \quad=\quad 25+9 & =\quad \mathrm{c}^{2}=34
\end{array}
$$

$$
c=\sqrt{34}
$$

Answer:
The fon is (h, k), and its $s(4,-6)$ DreNMeNe vertices ane $(1-2 a, k)$, so these are $(4+5,-6) \rightarrow$ $(9,-6)$ ndg. $5,-6) \rightarrow(-1,-6)$

The co-vertices are $(h, k \pm b)$, so these are $(4,-6+3) \rightarrow$ $(4,-3)$, and $(4,-6-3) \rightarrow(4,-9)$

The length of transverse axis is 2 a , so it is $2(5)=10$ units
The length of the conjugate axis is $2 b$, so it is $2(3)=6$ units
The foci are $(h \pm c, \mathrm{k})$, so these are $(4+\sqrt{\mathbf{3 4}},-6)$, and $(4-\sqrt{34},-6)$.

The asymptotes are $\mathrm{y}-\mathrm{k}= \pm \frac{b}{a}(x-h)$, so these are

$$
\begin{aligned}
& y+6=\frac{3}{5}(x-4) \rightarrow y=\frac{3}{5}(x-4)-6, \text { and } y+6=-\frac{3}{5}(x-4) \\
& \rightarrow y=-\frac{3}{5}(x-4)-6
\end{aligned}
$$

6. Step 1. $\frac{(y-8)^{2}}{81}-\frac{(x+1)^{2}}{121}=1$ to $\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1$
