Now to define what we are actually creating with these two processes.

Definition: A *Basis* for the vector space V is a linearly independent spanning set of V.

Basic Examples:

\[
\begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix},
\begin{pmatrix}
0 \\
1 \\
0
\end{pmatrix},
\begin{pmatrix}
0 \\
0 \\
1
\end{pmatrix}
\text{ for } \mathbb{R}^3
\]

\[
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix},
\begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix},
\begin{pmatrix}
0 & 0 \\
1 & 0
\end{pmatrix},
\begin{pmatrix}
0 & 0 \\
0 & 1
\end{pmatrix}
\text{ for } M_{2 \times 2}
\]

and so on.

Less Basic Examples:

\[
\begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix},
\begin{pmatrix}
0 & 1 \\
1 & 1
\end{pmatrix},
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\text{ for } \mathbb{R}^3
\]

\[
\{x^2 - 1, x^2 + x, x - 1\} \text{ for } \mathcal{P}_2.
\]

Now to look into the size of bases.

Dimension

The Fundamental Theorem (of vector spaces?)

Take a vector space

\[V = \text{Span}\{v_1, v_2, v_3, \ldots, v_n\} \]

and the linearly independent set

\[\{x_1, x_2, \ldots, x_k\} \in V. \]

(Notice that the x go to k, the v go to n.)

We always get $k \leq n$.

This is not particularly easy to prove, but hopefully will make some sense. This one is a proof by contradiction. The idea is you start with the *opposite* of what you want, then prove it to be impossible. So, we start by assuming that $k = n + 1$ then show that this makes the set of x vectors linearly dependent.

Proof.

The first step is to write x_1 as a linear combination of the v vectors:

\[x_1 = a_1 v_1 + a_2 v_2 + \cdots + a_n v_n. \]

This is possible since the v vectors span all of V and $x_1 \in V$. Also, $x_1 \neq 0$, since the set of them is not linearly dependent, so at least ONE of the a_k values is $\neq 0$. So, rearrange the v so that we get

\[x_1 = a_1 v_1 + a_2 v_2 + \cdots + a_n v_n, \quad a_1 \neq 0 \]