Remark A similar proof may be given for the continuity of cosine function.

Example 18 Prove that the function defined by \(f(x) = \tan x \) is a continuous function.

Solution The function \(f(x) = \tan x = \frac{\sin x}{\cos x} \). This is defined for all real numbers such that \(\cos x \neq 0 \), i.e., \(x \neq (2n + 1) \frac{\pi}{2} \). We have just proved that both sine and cosine functions are continuous. Thus \(\tan x \) being a quotient of two continuous functions is continuous wherever it is defined.

An interesting fact is the behaviour of continuous functions with respect to composition of functions. Recall that if \(f \) and \(g \) are two real functions, then

\[
(f \circ g)(x) = f(g(x))
\]

is defined whenever the range of \(g \) is a subset of domain of \(f \). The following theorem (stated without proof) captures the continuity of composite functions.

Theorem 2 Suppose \(f \) and \(g \) are real valued functions such that \((f \circ g) \) is defined at \(c \). If \(g \) is continuous at \(c \) and if \(f \) is continuous at \(g(c) \), then \((f \circ g) \) is continuous at \(c \).

The following examples illustrate this theorem.

Example 19 Show that the function defined by \(f(x) = \sin(x^2) \) is a continuous function.

Solution Observe that the function is defined for every real number. The function \(f \) may be thought of as a composition \(g \circ h \) of the two functions \(g \) and \(h \), where \(g(x) = \sin x \) and \(h(x) = x^2 \). Since \(g \) and \(h \) are continuous functions, by Theorem 2, it can be deduced that \(f \) is a continuous function.

Example 20 Show that the function \(f \) defined by

\[
f(x) = |1 - x| + |x|,
\]

where \(x \) is any real number, is a continuous function.

Solution Define \(g \) by \(g(x) = 1 - x + |x| \) and \(h \) by \(h(x) = |x| \) for all real \(x \). Then

\[
(h \circ g)(x) = h(g(x))
\]

\[
= h(1 - x + |x|)
\]

\[
= |1 - x + |x|| = f(x)
\]

In Example 7, we have seen that \(h \) is a continuous function. Hence \(g \) being a sum of a polynomial function and the modulus function is continuous. But then \(f \) being a composite of two continuous functions is continuous.
or \[\frac{dy}{dx} = y \log a \]

Thus \[\frac{d}{dx}(a^x) = a^x \log a \]

Alternatively \[\frac{d}{dx}(a^x) = \frac{d}{dx}(e^{x \log a}) = e^{x \log a} \frac{d}{dx}(x \log a) \]

\[= e^{x \log a} \cdot \log a = a^x \log a. \]

Example 32 Differentiate \(x^{\sin x}, x > 0 \) w.r.t. \(x \).

Solution Let \(y = x^{\sin x} \). Taking logarithm on both sides, we have

\[\log y = \sin x \log x \]

Therefore

\[\frac{1}{y} \frac{dy}{dx} = \sin x \frac{d}{dx}(\log x) + \log x \frac{d}{dx}(\sin x) \]

or

\[\frac{1}{y} \frac{dy}{dx} = (\sin x) \frac{1}{x} - \cos x \log x \]

or

\[\frac{dy}{dx} = y \left(\frac{\sin x}{x} + \cos x \log x \right) \]

\[= x^{\sin x - 1} \cdot \sin x + x^{\sin x} \cdot \cos x \log x \]

Example 33 Find \(\frac{dy}{dx} \), if \(y^a + x^b + x^c = a^b \).

Solution Given that \(y^a + x^b + x^c = a^b \).

Putting \(u = y^a, v = x^b \) and \(w = x^c \), we get \(u + v + w = a^b \)

Therefore \[\frac{du}{dx} + \frac{dv}{dx} + \frac{dw}{dx} = 0 \] ... (1)

Now, \(u = y^a \). Taking logarithm on both sides, we have

\[\log u = x \log y \]

Differentiating both sides w.r.t. \(x \), we have
\[\frac{1}{u} \frac{du}{dx} = x \frac{d}{dx} (\log y) + \log y \frac{d}{dx} (x) \]
\[= x \frac{1}{y} \frac{dy}{dx} + \log y \cdot 1 \]

So
\[\frac{du}{dx} = u \left(\frac{x}{y} \frac{dy}{dx} + \log y \right) = x^y \left[\frac{x}{y} \frac{dy}{dx} + \log y \right] \quad \cdots (2) \]

Also \(v = x^y \)

Taking logarithm on both sides, we have
\[\log v = y \log x \]

Differentiating both sides w.r.t. \(x \), we have
\[\frac{1}{v} \frac{dv}{dx} = y \frac{d}{dx} (\log x) + \log x \frac{dy}{dx} \]
\[= y \cdot \frac{1}{x} + \log x \cdot \frac{dy}{dx} \]

So
\[\frac{dv}{dx} = x^y \left[\frac{1}{x} + \log x \frac{dy}{dx} \right] \quad \cdots (3) \]

Again \(w = x^x \)

Taking logarithm on both sides, we have
\[\log w = x \log x \]

Differentiating both sides w.r.t. \(x \), we have
\[\frac{1}{w} \frac{dw}{dx} = x \frac{d}{dx} (\log x) + \log x \frac{d}{dx} (x) \]
\[= x \cdot \frac{1}{x} + \log x \cdot 1 \]

\[\frac{dw}{dx} = w (1 + \log x) \]
\[= x^x (1 + \log x) \quad \cdots (4) \]
From (1), (2), (3), (4), we have
\[y^x \left(\frac{x \, dy}{y \, dx} + \log y \right) + x^y \left(\frac{y}{x} + \log x \frac{dy}{dx} \right) + x^y (1 + \log x) = 0 \]
or
\[(x \cdot y^{x-1} + x \cdot \log x) \frac{dy}{dx} = -(x^y (1 + \log x) - x^y - y^x \log y) \]
Therefore
\[\frac{dy}{dx} = \frac{-[y^x \log y + y \cdot y^{x-1} + x^y (1 + \log x)]}{x \cdot y^{x-1} + x^y \log x} \]

EXERCISE 5.5

Differentiate the functions given in Exercises 1 to 11 w.r.t. \(x \).

1. \(\cos x \cdot \cos 2x \cdot \cos 3x \)
2. \(\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}} \)
3. \((\log x)^{\sin x} \)
4. \(x^x = 2^{\sin x} \)
5. \((x + 3)^2 \cdot (x + 4)^3 \cdot (x + 5)^4 \)
6. \((\log x)^x + x^{\log x} \)
7. \((\sin x)^x + \sin^x \)
8. \((\sin x)^x + \sin^x \)
9. \((x \cos x)^y + (x \sin x)^x \)
10. \(x^{\cos x} + x^2 + 1 \) \(\frac{1}{x^2 - 1} \)

Find \(\frac{dy}{dx} \) of the functions given in Exercises 12 to 15.

12. \(x^y + y^x = 1 \)
13. \(y^x = x^y \)
14. \((\cos x)^y = (\cos y)^x \)
15. \(xy = e^{x-y} \)

Find the derivative of the function given by \(f(x) = (1 + x)(1 + x^2)(1 + x^4)(1 + x^8) \) and hence find \(f'(1) \).

17. Differentiate \((x^2 - 5x + 8)(x^3 + 7x + 9) \) in three ways mentioned below:
 (i) by using product rule
 (ii) by expanding the product to obtain a single polynomial.
 (iii) by logarithmic differentiation.

Do they all give the same answer?
Therefore
\[\frac{dy}{dx} = \frac{dy}{d\theta} = \frac{3a \sin^2 \theta \cos \theta}{-3a \cos^2 \theta \sin \theta} = -\tan \theta = -\sqrt{\frac{y}{x}} \]

Note Had we proceeded in implicit way, it would have been quite tedious.

EXERCISE 5.6

If \(x \) and \(y \) are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find \(\frac{dy}{dx} \).

1. \(x = 2a t^2, \quad y = at^4 \)
2. \(x = a \cos \theta, \quad y = b \cos \theta \)
3. \(x = \sin t, \quad y = \cos 2t \)
4. \(x = 4t, \quad y = \frac{4}{t} \)
5. \(x = \cos \theta - \cos 2\theta, \quad y = \sin \theta - \sin 2\theta \)
6. \(x = a (\theta - \sin \theta), \quad y = a (1 + \cos \theta) = \frac{\cos \theta}{\sqrt{\cos 2t}}, \quad y = \frac{\cos^3 t}{\sqrt{\cos 2t}} \)
7. \(x = a (\cos \theta + \theta \sin \theta), \quad y = b (\sin \theta - \theta \cos \theta) \)
8. \(x = \sqrt{a \sin^2 t}, \quad y = \sqrt{a \cos^2 t}, \quad \text{show that} \quad \frac{dy}{dx} = -\frac{y}{x} \)

5.7 Second Order Derivative

Let \(y = f(x) \). Then
\[\frac{dy}{dx} = f'(x) \]

If \(f'(x) \) is differentiable, we may differentiate (1) again w.r.t. \(x \). Then, the left hand side becomes \(\frac{d}{dx} \left(\frac{dy}{dx} \right) \) which is called the second order derivative of \(y \) w.r.t. \(x \) and is denoted by \(\frac{d^2 y}{dx^2} \). The second order derivative of \(f(x) \) is denoted by \(f''(x) \). It is also
we need to find all x such that \(\frac{2^{x+1}}{1+4^x} \leq 1 \), i.e., all x such that $2^{x+1} \leq 1 + 4^x$. We may rewrite this as $2 \leq \frac{1}{2^x} + 2^x$ which is true for all x. Hence the function is defined at every real number. By putting $2^x = \tan \theta$, this function may be rewritten as

$$f(x) = \sin^{-1}\left[\frac{2^{x+1}}{1+4^x} \right]$$

$$= \sin^{-1}\left[\frac{2 \cdot 2}{1+(2^x)^2} \right]$$

$$= \sin^{-1}\left[\frac{2 \tan \theta}{1+\tan^2 \theta} \right]$$

$$= \sin^{-1} [\sin 2\theta]$$

$$= 2\theta = 2 \tan^{-1} (2^x)$$

Thus

$$f'(x) = 2 \cdot \frac{\frac{d}{dx} (2^x)}{1+(2^x)^2} \cdot \frac{2}{1+4^x} \cdot (2^x) \log 2$$

$$= \frac{2^{x+1} \log 2}{1+4^x}$$

Example 46 Find $f'(x)$ if $f(x) = (\sin x)^{\sin x}$ for all $0 < x < \pi$.

Solution The function $y = (\sin x)^{\sin x}$ is defined for all positive real numbers. Taking logarithms, we have

$$\log y = \log (\sin x)^{\sin x} = \sin x \log (\sin x)$$

Then

$$\frac{1}{y} \frac{dy}{dx} = \frac{d}{dx} (\sin x \log (\sin x))$$

$$= \cos x \log (\sin x) + \sin x \cdot \frac{1}{\sin x} \cdot \frac{d}{dx} (\sin x)$$

$$= \cos x \log (\sin x) + \cos x$$

$$= (1 + \log (\sin x)) \cos x$$
Chain rule is a rule to differentiate composites of functions. If $f = v \circ u, t = u(x)$, and if both $\frac{dt}{dx}$ and $\frac{dv}{dt}$ exist then

$$ \frac{df}{dx} = \frac{dv}{dt} \cdot \frac{dt}{dx} $$

Following are some of the standard derivatives (in appropriate domains):

$$ \frac{d}{dx} \left(\sin^{-1} x \right) = \frac{1}{\sqrt{1-x^2}} \quad \frac{d}{dx} \left(\cos^{-1} x \right) = -\frac{1}{\sqrt{1-x^2}} $$

$$ \frac{d}{dx} \left(\tan^{-1} x \right) = \frac{1}{1+x^2} \quad \frac{d}{dx} \left(\cot^{-1} x \right) = -\frac{1}{1+x^2} $$

$$ \frac{d}{dx} \left(\sec^{-1} x \right) = \frac{1}{x \sqrt{1-x^2}} \quad \frac{d}{dx} \left(\cosec^{-1} x \right) = -\frac{1}{x \sqrt{1-x^2}} $$

$$ \frac{d}{dx} (e^x) = e^x \quad \frac{d}{dx} (k x^a) = k x^{a-1} $$

Logarithmic differentiation is a powerful technique to differentiate functions of the form $f(x) = u(x)^v$. Here both $f(x)$ and $u(x)$ need to be positive for this technique to make sense.

Rolle’s Theorem: If $f : [a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and differentiable on (a, b) such that $f(a) = f(b)$, then there exists some c in (a, b) such that $f'(c) = 0$.

Mean Value Theorem: If $f : [a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and differentiable on (a, b). Then there exists some c in (a, b) such that

$$ f'(c) = \frac{f(b) - f(a)}{b - a} $$