ÉLECTROSTATIQUE et ÉLECTROCINÉTIQUE

Rappel de cours et exercices corrigé d'Orhysique Note 50% cours + 50% exos from 4 of 266 page

Émile Amzallag Josep Cipriani Josseline Ben Aïm Norbert Piccioli Maîtres de conférences à l'université Pierre et Marie Curie (Paris 6)

2^e édition

5.6. Calcul de forces électrostatiques	
à partir de l'énergie	123
5.7. Exemples d'application	124
Exercices	129
Corrigés	133
6 LE COURANT ÉLÉCTRTIQUE DANS LES MILIEUX	K
CONDUCTEURS	148
6.1. Les charges mobiles	148
6.2. Le courant électrique	149
6.3. Équation de continuité	153
6.4. Conductivité électrique : loi d'Ohm locale	156
6.5. Résistance électrique :	
loi d'Ohm macroscopique	159
6.6. Association de résistances	160
6.7. Rôle du générateur : force électromotric	161
6.8. Les lois de Kirchhoff	163
6.9. Aspect énergétique : hu de Joale	165
Exercices 200	167
	172
	100
	105
7.1. Dipôles électrocinétiques	183
7.2. Réponse d'un circuit à un échelon de tension	185
7.3 Circuits en régime sinusoïdal	192
Exercices	202
Corrigés	206
PROBLÈMES D'EXAMEN CORRIGÉS	221
INDEX	252

Cette relation permet de définir la coordonnée du rotationnel dans une direction quelconque de vecteur unitaire \vec{n} . On en déduit :

$$\mathscr{C} = \oint_{(C)} \vec{V} \cdot \vec{dM} = \iint_{(S)} \left(\overrightarrow{\operatorname{rot}} \vec{V} \right) \cdot \vec{dS}$$

Cette formule, dite de Stokes (voir paragraphe **1.8**), facilite parfois le calcul de la circulation d'un vecteur le long d'un contour fermé.

1.6.4 Laplacien

L'opérateur Laplacien (noté Δ) est défini par :

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

Il peut s'appliquer à une fonction scalaire :

L'intérêt de tous ces opérateurs vectoriels est d'une part, de permettre une écriture concise des équations dites « locales » (exemple : équations de Maxwell), et d'autre part, de faciliter les calculs, grâce aux relations vectorielles qui existent entre eux, et aux transformations intégrales qu'ils permettent d'effectuer.

1.7. RELATIONS VECTORIELLES

Produit mixte : $\vec{A} \cdot (\vec{B} \wedge \vec{C}) = \vec{C} \cdot (\vec{A} \wedge \vec{B}) = \vec{B} \cdot (\vec{C} \wedge \vec{A})$ (1.12)

Double produit vectoriel :
$$\vec{A} \wedge \vec{B} \wedge \vec{C} = \vec{B}(\vec{A} \cdot \vec{C}) - \vec{C}(\vec{A} \cdot \vec{B})$$
 (1.13)

EXERCICES

1.1. On considère le champ vectoriel :

 $\vec{A} = (3x^2 + 6y)\vec{e}_x - 14yz\vec{e}_y + 20xz^2\vec{e}_z$

Calculer la circulation de \vec{A} entre les points (0, 0, 0) et (1, 1, 1) le long des chemins suivants :

a) le segment de droite joignant ces deux points,

b) les segments de droite allant de (0, 0, 0) à (1, 0, 0) puis de (1, 0, 0) à (1, 1, 0) et enfin de (1, 1, 0) jusqu'à (1, 1, 1).

Ce champ vectoriel est-il un gradient ?

1.2. Soit le champ vectoriel :

1.3. On considère le champ vectoriel :

$$\vec{V} = (2x - y)\vec{e}_x + (2y - x)\vec{e}_y - 4z\vec{e}_z$$

Montrer que ce champ est un gradient, et déterminer la fonction scalaire φ dont il dérive par la relation $\vec{V} = \overrightarrow{\text{grad}} \varphi$.

1.4. Un champ de vecteur \vec{E} , dans l'espace orthonormé \vec{e}_x , \vec{e}_y , \vec{e}_z , est caractérisé par ses composantes :

$$\vec{E} = \begin{pmatrix} yz \\ zx \\ f(x,y) \end{pmatrix}$$
 où f ne dépend que de x et y .

On en déduit finalement :

$$\varphi = x^2 - yx + y^2 - 2z^2 + C$$

1.4. Le champ \vec{E} est défini par :

$$\vec{E} = yz\vec{e}_x + zx\vec{e}_y + f(x,y)\vec{e}_z$$

1) Pour que \vec{E} soit un gradient, il faut que les dérivées croisées de ses composantes soient égales deux à deux, soit :

$$\frac{\partial E_x}{\partial y} = \frac{\partial E_y}{\partial x} \qquad \implies \qquad z = z \text{ qui est vérifié identiquement}$$

$$\frac{\partial E_y}{\partial z} = \frac{\partial E_z}{\partial y} \qquad \implies \qquad x = \frac{\partial f}{\partial y}$$

$$\frac{\partial E_z}{\partial x} = \frac{\partial E_x}{\partial z} \qquad \implies \qquad \frac{\partial f}{\partial x} = y \qquad \text{conditions nécessaires}$$

$$\frac{\partial f}{\partial y} = x \qquad \implies \qquad f = xy + g(x) = CO$$

$$\frac{\partial f}{\partial x} = y + \frac{dg}{dx} = y \qquad \implies \qquad \frac{Q}{dx} = 0 \implies x \in CO$$
La fonction form only the only form the la forme :
$$D = \int f = xy + C$$

2) Pour déterminer le potentiel V, on écrit que $\vec{E} = -\overrightarrow{\text{grad}} V$. D'où :

$$E_x = yz = -\frac{\partial V}{\partial x} \implies V = -xyz + u(y, z)$$

$$E_y = xz = -\frac{\partial V}{\partial y} = xz - \frac{\partial u}{\partial y} \implies u = v(z)$$

$$E_z = xy + C = -\frac{\partial V}{\partial x} = xy - \frac{\partial u}{\partial z} \implies v = -Cz + \text{cte}$$

On en déduit :

P

$$V = -xyz - Cz + cte$$

3) Circulation entre les points (0, 0, 0) et (1, 1, 1)

Corrigés

D'où :

$$\Phi = \iiint_{\tau} r^4 \sin \theta \, dr \, d\theta \, d\varphi$$

$$= \int_0^a r^4 \, dr \int_0^{\frac{\pi}{2}} \sin \theta \, d\theta \int_0^{2\pi} d\varphi$$

$$= \frac{a^5}{5} \times 1 \times 2\pi = \frac{2\pi a^5}{5}$$

1.8. 1)
$$V = 2z\bar{e}_x + 3\bar{e}_y + 2xy\bar{e}_z$$

div $\vec{V} = \frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z} = 0$
Soit *S* la surface totale de la demi-sphère (hémis-
phère + base) et τ le volume de cette demi-sphère.
Le théorème de la divergence permet d'écrire :
 $\Phi_S = \iint_{(S)} \vec{V} \cdot \vec{N} \, dS = \iiint_{(\tau)} div \vec{V} \, d\tau = 0$
 Φ (sortant) + Φ (sortant) = $0 \implies \Phi$ (sortant) = 0 trontrant) = 0
 Φ (sortant) + Φ (sortant) = $0 \implies \Phi$ (sortant) = 0 trontrant) = 0
 $disque$
2) On en déduit :
 $\Phi = \iint_{disque} 2r^3 \sin \theta \cos \theta \, d\theta \, dr$
 $= 2 \int_{0}^{2\pi} \sin \theta \cos \theta \, d\theta \int_{0}^{R} r^3 \, dr = 0$

1.9.

$$\vec{V} = K \, \frac{\vec{r}}{r^3} = K \frac{\vec{e}_r}{r^2}$$

a) Si la surface fermée contient l'origine, on ne peut pas appliquer le théorème de Green-Ostrogradsky car div \vec{V} n'est pas définie en O. Il faut faire un calcul direct :

$$\Phi = \iint_{(S)} \vec{V} \cdot \vec{N} \, \mathrm{d}S = K \iint_{(S)} \frac{\mathrm{d}S}{r^2} \vec{N} \cdot \vec{e}_r$$
$$= K \int_{(S)} \mathrm{d}\Omega = 4\pi k$$

S

• les distributions continues de charge : hypothèse d'une charge macroscopique permettant de définir une charge infinitésimale dq, à laquelle on peut appliquer les formules établies dans le cas d'une charge ponctuelle, avant d'intégrer sur la distribution.

On définit ainsi les densités :

- linéique sur un fil : - surfacique (ou surperficielle) sur une surface : $\sigma = \frac{dq}{dS}$ [C · m⁻¹] - volumique dans un volume : $\rho = \frac{dq}{d\tau}$ [C · m⁻²]

auxquelles correspondent respectivement les charges infinitésimales λdl , σdS et $\rho d\tau$.

2.2. LOI DE COULOMB

Soit deux charges q et q' placées en M et M' et distantes de r. Ce chargés peuvent être positives ou négatives, mais dans le cas de la littre, nous supposerons qu'elles sont de même signe. La loi de Coulomb permet de déterminer la force $\vec{F}_{M'}$ exercée par l'un ou apost d

La loi de Coulomb permet de déformine la force $\vec{F}_{M'}$ exercée par result, ou encore la force \vec{F}_{M} exercée par q' sur q cos deux lorlois ékort egales et ourbre subomormément \vec{F}_{M} M $u_{MM'}$ au principe de l'action et la réaction.

Cette loi s'écrit :

$$\vec{F}_{M'} = K \frac{qq'}{r^2} \vec{u}_{MM'}$$
 (2.1)

ou

$$\vec{u}_{MM'}$$
 est le vecteur unitaire porté par le support de MM' , orienté de M vers M' , (on dit dans le sens qui va de la cause vers l'effet).

 $\vec{F}_M = K \frac{qq'}{r^2} \vec{u}_{M'M}$ avec $K = \frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9$ S.I.

La force est répulsive si les charges sont de même signe, elle est attractive si elles sont de signes contraires.

Cette loi traduit l'interaction entre les deux objets q et q'. Les notions de champ et de potentiel permettent de préciser les propriétés relatives à un seul objet.

Les surfaces équipotentielles V = cte sont des sphères centrées en M. En effet, sur ces surfaces, on a :

$$\mathrm{d}V = \left(\overrightarrow{\mathrm{grad}} V\right) \cdot \overrightarrow{\mathrm{d}\ell} = -\vec{E} \cdot \overrightarrow{\mathrm{d}\ell} = 0 \implies \overrightarrow{\mathrm{d}\ell} \perp \vec{E}$$

2.3.3 Cas d'un système de charges

Lorsque *n* charges ponctuelles existent simultanément en des points M_1 , M_2, \ldots, M_n , le principe de superposition permet d'écrire :

– pour le champ résultant en un point M (avec $r_i = M_i M \neq 0$):

$$\vec{E}_M = K \sum_i \frac{q_i}{r_i^2} \vec{u}_{M_i M}$$
(2.5)

- et pour le potentiel résultant :

$$V_M = K \sum_i \frac{q_i}{r_i}$$
ons continues de cherger or aura de même :

Dans le cas de distributio

- pour un fil chargé unifor

$$\mathbf{Pre}^{\vec{E}} \mathbf{Ne} \mathbf{V}_{\widehat{AB}} \frac{W\ell}{r^2} \vec{u}_{PM}$$
$$V_M = K \int_{\widehat{AB}} \frac{\partial Q}{r}$$

- pour une surface chargée uniformément :

$$\vec{E}_M = K \iint_{(S)} \frac{\sigma \, \mathrm{d}S}{r^2} \vec{u}_{MM'}$$
$$V_M = K \iint_{(S)} \frac{\sigma \, \mathrm{d}S}{r}$$

M

- et pour un volume chargé uniformément :

$$\vec{E}_M = K \iiint_{(S)} \frac{\rho \, \mathrm{d}\tau}{r^2} \vec{u}_{MM'}$$
$$V_M = K \iiint_{(\tau)} \frac{\rho \, \mathrm{d}\tau}{r}$$

3) Calcul du champ à partir du potentiel

$$V = \frac{\lambda R}{2\varepsilon_0 (R^2 + z^2)^{1/2}} + \text{Cte} \qquad \vec{E} = -\overrightarrow{\text{grad}} V$$

On a successivement :

On suppose $\sigma > 0$. Calculer le potentiel et en déduire le champ.

On peut considérer le disque comme engendré par un fil circulaire de rayon r et d'épaisseur dr, quand r varie de O à R.

De la sorte, on peut appliquer les résultats de l'exemple précédent.

Pour trouver la correspondance des densités de charge, on écrit que la charge $2\pi r\lambda$ portée par le fil de l'exemple précédent est maintenant portée par le fil de même rayon mais d'épaisseur dr. On a donc la correspondance :

 $2\pi r\lambda \longmapsto 2\pi r \, \mathrm{d} r\sigma \ \mathrm{et} \ \lambda \longmapsto \sigma \, \mathrm{d} r$

• Le calcul direct du champ \vec{E} créé par un disque chargé superficiellement, en un point M de son axe, sera proposé comme exercice.

Exemple 4. Potentiel créé par une sphère de centre O et de rayon R, chargée uniformément, en un point M extérieur à la sphère.

1) Sphère chargée en surface

Soit σ la charge surfacique.

positives. Le moment dipolaire moléculaire aura tendance à s'aligner avec le champ \vec{E} . On dit que la molécule (ou la substance) se polarise.

• Énergie potentielle du dipôle dans le champ \vec{E} :

$$E_{\rm p} = q V_B - q V_A = q (V_B - V_A)$$

Or le champ appliqué \vec{E} est lié à $V_B - V_A$ par

$$\vec{E} = -\overrightarrow{\text{grad}} V = -\frac{\partial V}{\partial x}\vec{e}_x = -\frac{\Delta V}{\Delta x}\vec{e}_x = -\frac{V_B - V_A}{a\cos\theta}\vec{e}_x$$

On en déduit :

$$E_{\rm p} = -aqE\cos\theta$$

 $E_{\rm p} = -pE\cos\theta = -\vec{p}\cdot\vec{E}$

soit

L'énergie potentielle est minimum lorsque
$$\theta = 0$$
, indiquant que le dipôte est
en équilibre stable quand il est orienté parallèlement au troup repuqué.
b) Cas d'un champ non uniforme

b) Cas d'un champ non uniforme

Dans ce cas, les force $F_B \oplus A$ ne sont plus é ales osées. Il en résulte une force qui va viplacer le dipôle can son usemble. On aura donc un mouvem \mathcal{D} i de translation de centre \mathcal{C} e masse O du dipôle, en plus du mouvement de rotation autour de DO

La force résultante est liée à l'énergie potentielle par :

$$\vec{F} = -\overrightarrow{\operatorname{grad}} \, \vec{E}_{\mathrm{p}}$$

On aura donc :

$$\vec{F} = \overrightarrow{\text{grad}} \left(\vec{p} \cdot \vec{E} \right)$$

On a de même :

$$\vec{E}_2 + \vec{E}_3 = 2E_2 \cos \frac{\pi}{4} \vec{e}_y = 2K \frac{4q}{a^2} \frac{\sqrt{2}}{2} \vec{e}_y$$
$$= 4K \frac{q}{a^2} \sqrt{2} \vec{e}_y \text{ soit } :$$
$$\vec{E} = \frac{2Kq}{a^2} \sqrt{2} \vec{e}_y$$

Le champ résultant \vec{E} est donc :

dirigé suivant l'axe y'oy ;

- dans le sens positif de l'axe y'oy ;

- de norme
$$E = \frac{2Kq}{a^2}\sqrt{2}$$
.
A.N.: $E = 9 \cdot 10^9 \times 10^{-8} \times 2\sqrt{2} = 254,6 \text{ V} \cdot \text{m}^{-1}$
2) Détermination du potentiel V en O :
Soient V₁, V₂, V₃ et V₄ les potentiels créés par les character $V_{2,2}, q_3$ et q_4 en O.
 $V = V_1 + V_2 + V_3 + V_4 = \frac{2Kq}{a\sqrt{2}}[1 - 2 + 26.0]$

3) Variation du potentiel sur les axes x'Ox et y'Oy

Corrigés

$$\vec{E'_M} = \frac{4Kq}{\Omega M^2} \varepsilon_1 \vec{e}_y$$

$$\vec{E'_M} = 3,18 \cdot 10^6 \,\mathrm{Vm^{-1}}$$

3) À la distance $\Omega M = 20L$, l'erreur relative effectuée en utilisant l'approximation dipolaire est :

$$\frac{\Delta E}{E} = \frac{E_M - E'_M}{E_M} \simeq \frac{3\varepsilon_2^2}{2 \times 2\varepsilon_1} = 0,056$$

L'approximation dipolaire sera meilleure pour une distance ΩM bien supérieure à 20L.

$$\vec{\Gamma} = \vec{p} \wedge \vec{E} = q \overrightarrow{AB} \wedge \vec{E} = \vec{0} \quad (\text{car} \ \overrightarrow{AB} / / \vec{E})$$

Le dipôle est donc en équilibre ; l'équilibre est stable car, lorsqu'on écarte légèrement le dipôle de sa position d'équilibre, le couple de forces $(\overrightarrow{qE}, -\overrightarrow{qE})$ tend à l'y ramener.

Corrigés

2) a) Énergie potentielle du dipôle placé en M:

$$E_{\rm p} = -\vec{p} \cdot \vec{E} = -(p\vec{u}_r) \cdot \left(2Kp_A\frac{\vec{u}_r}{r^3}\right) = -\frac{2Kp_Ap}{r^3}$$

b) Force à laquelle est soumis le dipôle placé en M:

$$\vec{F} = -\frac{\mathrm{d}E_{\mathrm{p}}}{\mathrm{d}r}\vec{u}_r = -6K\frac{p_Ap}{r^4}\vec{u}_r$$
 (attractive)

3) a) Énergie potentielle du dipôle induit.

Comme $\vec{p} = \beta \vec{E}$, on a :

$$E_{\rm p} = -\vec{p}\vec{E} = -\beta E^2 = -\frac{\beta K^2 4 p_A^2}{r^6} = -\frac{4\beta K^2 p_A^2}{r^6}$$

b) Force à laquelle est soumis le dipôle induit :

© Dunod. La photocopie non autorisée est un délit.

3.5. ÉQUATIONS DE POISSON ET DE LAPLACE

En présence d'une densité volumique de charge, on peut écrire les deux lois locales :

$$\begin{cases} \vec{E} = -\overrightarrow{\text{grad}} V \\ \operatorname{div} \vec{E} = \frac{\rho}{\varepsilon_0} \implies \operatorname{div}(-\overrightarrow{\text{grad}} V) = \frac{\rho}{\varepsilon_0} \end{cases}$$

Or div $(\overrightarrow{\text{grad}}) = \vec{\nabla} \cdot \vec{\nabla} = \Delta$. On en déduit :

$$\Delta V + \frac{\rho}{\varepsilon_0} = 0 \qquad (\text{équation de Poisson}) \qquad (3.4)$$

et dans le vide :

où \vec{T} est le vecteur unitaire porté par la tangente en M à l'interface, et \vec{N}_{12} est le vecteur unitaire normal à l'interface, orienté du milieu (1) vers le milieu (2). On veut exprimer que la circulation de \vec{E} le long du contour fermé élémentaire (C) représenté sur la figure est nulle. En supposant que la contribution des côtés AD et BC est négligeable devant celle des côtés AB et DC, on peut écrire :

$$\oint_{(C)} \vec{E} \cdot \vec{d\ell} = 0 = E_{1T} AB - E_{2T} CD \quad \text{avec} \quad AB = CD$$

on en déduit :

$$\vec{E}_{1T} = \vec{E}_{2T}$$

La composante tangentielle de \vec{E} se conserve, malgré la discontinuité de ρ sur l'interface.

Supposons maintenant que l'interface porte une charge surfacique σ .

On considère le parallélépipède élémentaire représenté sur la figure, et on cherche à déterminer le flux de \vec{E} sortant de ce parallélépipède.

La contribution des densités volumiques ρ_1 et ρ_2 à ce flux étant un infiniment petit du 3^e ordre comparée à la contribution de la densité surfacique σ qui est du 2^e ordre, on peut ignorer les charges volumiques et écrire :

$$\Phi = \int_{(S \text{ totale})} \vec{E} \cdot \vec{dS} = E_{2N}S - E_{1N}S$$
Le théorème de Gauss s'exprime par **Otesale**

$$\Phi = \frac{\sigma S}{30} \text{ of } 266$$

$$\Phi = \frac{\sigma S}{30} \text{ of } 266$$

$$\vec{E}_{2N} - \vec{E}_{1N} = \frac{\sigma}{\varepsilon_0} \vec{N}_{12}$$
(3.7)

La composante normale de \vec{E} subit une discontinuité proportionnelle à la densité surfacique σ . Elle ne se conserve que si l'interface ne porte pas de charges.

Le calcul du champ \vec{E} au voisinage d'un plan infini chargé, effectué dans l'exemple 3 du chapitre **2**, a montré que ce champ est donné par $\vec{E} = \pm \frac{\sigma}{2\varepsilon_0} \vec{N}_{12}$ de part et d'autre du plan.

On retrouve bien la discontinuité égale à $\frac{\sigma}{\varepsilon_0}$ en traversant le plan chargé.

61

(3.6)

D'où la variation de *E* en fonction de *r* représentée sur la figure.

3) Calcul du potentiel

Le champ \vec{E} étant radial, $dV = -\vec{E} \cdot \vec{dr} = -E dr$. À l'extérieur, on a :

$$V_{\text{ext}} = -\int E_{\text{ext}} \, \mathrm{d}r = -\frac{\rho R^3}{3\varepsilon_0} \int \frac{\mathrm{d}r}{r^2} = \frac{\rho R^3}{3\varepsilon_0 r} + C_1$$

Lorsque $r \longrightarrow \infty$ $V \longrightarrow 0 \implies C_1 = 0.$ À l'intérieur :

Exemple 3. Application de l'équation de Poisson

Retrouver l'expression du potentiel V(r) créé par une sphère chargée d'une densité volumique ρ en intégrant l'équation de Poisson.

L'équation locale de Poisson s'écrit :

$$\Delta V = -\frac{\rho}{\varepsilon_0}$$

Par suite de la symétrie sphérique, on a :

$$\Delta V = \frac{2}{r} \frac{\partial V}{\partial r} + \frac{\partial^2 V}{\partial r^2} = \frac{1}{r} \frac{\partial^2 (rV)}{\partial r^2}$$

3) À partir de l'expression de ce champ sur une sphère de centre O et de rayon r, déterminer la charge interne Q(r) contenue dans cette sphère. En déduire la charge totale de la distribution.

4) Calculer la densité volumique de charge ρ , à la distance r, en précisant son signe.

5) Montrer qu'au point O, il existe une charge positive finie, dont on précisera la valeur en fonction des données. Quelle est alors l'expression du champ au voisinage de O?

6) Comment peut-on finalement décrire la distribution de charge proposée ?

3.5. Exprimer le champ électrique créé en tout point de l'espace par une distribution volumique de charge $\rho(>0)$ répartie uniformément entre deux cylindres coaxiaux de longueur infinie de rayons respectifs R_1 et R_2 ($R_1 < R_2$), 1) en utilisant le théorème de Gauss, 2) à partir de l'équation locale : div $\vec{E} = \frac{\rho}{\varepsilon_0}$ Notes 2000

1) Exprimer le potentiel en tout point de l'espace en utilisant les équations locales de Laplace et de Poisson.

2) En déduire le champ électrique $\vec{E}(r)$.

3) Retrouver l'expression de $\vec{E}(r)$ en appliquant le théorème de Gauss.

CORRIGÉS

3.1. *1*) Fil de longueur finie : non, on ne peut appliquer le théorème de Gauss.

2) Fil de longueur infinie : oui. Dans ce cas, la surface de Gauss est un cylindre ayant pour axe le fil. Soit h et r respectivement la hauteur et le rayon de ce cylindre, r étant

Les charges $\sigma_1 dS_1$ et $\sigma_2 dS_2$ qui se font face sur deux éléments de surface correspondants sont égales et opposées (théorème de Faraday).

L'influence est dite partielle car seule une partie des lignes de champ issues de (C_1) aboutit à (C_2) .

4.5.2 Influence totale

Si l'un des deux corps (C_2 par exemple) entoure totalement l'autre, il y a correspondance totale entre les charges de la surface (S_1) de (C_1) et la surface interne (S_2) de (C_2) .

On peut alors écrire :

$$Q_1 = \int_{(S_1)} \sigma_1 \, \mathrm{d}S_1 = -\int_{(S_2)} \sigma_2 \, \mathrm{d}S_2$$

Les charges globales portées par les deux surfaces en regard sont égales et opposées.

le.co.uk On peut donc résumer la situation de la manière suivante

- dans la partie massive de (C_1) : $\vec{E}_1 = \vec{Q}$

artie massive de (

- sur la surface de (C_1) : charge Q_1 ~ 0 créant E_{2}
- sur la surface interne le (C_2) : charge

- sur la surface externe de (C_2) : apparition de la charge $+Q_1$ pour assurer la neutralité de (C_2) (si l'on suppose (C_2) neutre au départ),

– à l'extérieur des deux conducteurs : le champ \vec{E}_{ext} est celui créé par la seule charge Q_1 portée par la surface externe de (C_2) .

4.6. CAPACITÉ D'UN CONDUCTEUR UNIQUE

Soit un conducteur porté au potentiel V. Il apparaît alors sur sa surface, une charge q définie par :

$$q = \oint \int (S) \sigma \, \mathrm{d}S$$

Si le potentiel devient V_1 , puis V_2 , puis V_3 , la charge devient q_1 , q_2 , q_3 . Les relations charge-

Comme la surface de la feuille métallique est une équipotentielle

$$V'_{M_1} - V'_{M_2} = 0$$

$$\frac{Q}{C'} = \frac{Q}{C_1} + \frac{Q}{C_2} \qquad \text{où} \qquad C_1 = \frac{\varepsilon_0 S}{d_1} \quad \text{et} \quad C_2 = \frac{\varepsilon_0 S}{d_2}$$

Par conséquent, l'ensemble (P) + (M) est équivalent à deux condensateurs mis en parallèle.

On en déduit :

$$C' = \frac{C_1 C_2}{C_1 + C_2} = \frac{\varepsilon_0 S}{d_1 + d_2} = \frac{\varepsilon_0 S}{d - e}$$
soit :

$$C' = \frac{\varepsilon_0 S}{d\left(1 - \frac{e}{d}\right)} = \frac{C}{1 - \frac{e}{d}}$$
A.N. :

$$\frac{e}{d} = \frac{1}{2,5} = 0,4 \implies C' = \frac{C}{0,6} = 1,7 \cdot 10^{-9} \text{ F}$$

$$V'_A - V'_B = \frac{Q}{C} = \frac{C}{C'} (V_A - V_B)$$
A.N. :

$$V'_A - V'_B = 0,6 \times 500 = 300 \text{ V}$$
4.2. 1) On a successivement **O**

$$V'_A - V'_B = 0,6 \times 500 = 300 \text{ V}$$
4.2. 1) On a successivement **O**

$$V'_A - V'_B = 0,6 \times 500 = 300 \text{ V}$$
4.2. 1) On a successivement **O**

$$V'_A - V'_B = 0,6 \times 500 = 300 \text{ V}$$

$$V_A - V'_B = 0,6 \times 500 = 300 \text{ V}$$

$$V_A - V'_B = 0,6 \times 500 = 300 \text{ V}$$

$$V_A - V'_B = 0,6 \times 500 = 300 \text{ V}$$

$$V_A - V'_B = 0,6 \times 500 = 300 \text{ V}$$

$$V_A - V'_B = 0,6 \times 500 = 16 \text{ V}$$

$$V_A - V'_B = 0,6 \times 500 = 16 \text{ V}$$

2) La charge Q_1 va se répartir sur les deux sphères de façon qu'à l'équilibre le potentiel soit le même sur les deux sphères. On a donc :

On a donc :

$$V'_1 = V'_2 \Longrightarrow \frac{Q'_1}{R_1} = \frac{Q'_2}{R_2} = \frac{Q'_1 + Q'_2}{R_1 + R_2}$$

avec la condition de conservation de la charge :

$$Q_1 = Q_1' + Q_2'$$

Par conséquent :

$$Q'_1 = \frac{R_1}{R_1 + R_2} Q_1$$
 et $Q'_2 = \frac{R_2}{R_1 + R_2} Q_1$

5.2.2 Cas d'une distribution continue de charges

On peut étendre la sommation discontinue précédente à une sommation intégrale. En désignant par dq la charge élémentaire et par V le potentiel auquel est soumis cette charge, on obtient :

$$E_{\rm p} = \frac{1}{2} \int \frac{V \,\mathrm{d}q}{\mathrm{espace \ charge}}$$
(5.3)

 $dq = \lambda dl$ $E_p = \frac{1}{2} \int_{I} \lambda V dl$

 $\mathrm{d}q = \sigma \mathrm{d}S \qquad E_\mathrm{p} = \frac{1}{2} \int_S \sigma V \mathrm{d}s$

 $\mathrm{d}q = \rho \mathrm{d}\tau \qquad E_\mathrm{p} = \frac{1}{2} \int_{\tau} \rho V \mathrm{d}\tau$

distribution linéaire :

distribution superficielle :

distribution volumique :

5.3. ÉNERGIE ÉLECTROSTATIQUE EMMAGASINE CO.UK DANS LES CONDUCTEURS CHARGE f 266

5.3.1 Énergie d'un ford Ottur unique

treteur de capacité C portent la charge q, la relation (5.3) s'intè-Pour un de gre hamediatements parteur le conducteur est équipotentiel (V =cte). L'énergie emmagalinée s'ecrit donc, compte tenu que q = CV:

$$E_{\rm p} = \frac{1}{2}qV = \frac{1}{2}CV^2 = \frac{1}{2}\frac{q^2}{C}$$
(5.4)

5.3.2 Énergie d'un système à *n* conducteurs

On a alors :

$$E_{\rm p} = \frac{1}{2}q_1V_1 + \frac{1}{2}q_2V_2 + \dots \frac{1}{2}q_nV_n$$

$$E_{\rm p} = \frac{1}{2}\sum_i q_iV_i$$
(5.5)

où q_i est la charge portée par le conducteur *i* et V_i son potentiel.

Ce résultat, établi ici dans un cas particulier, est vrai dans le cas général : si un champ électrique est appliqué en un point quelconque de l'espace, on peut lui associer une densité volumique d'énergie donnée par :

$$w = \frac{1}{2} \varepsilon_0 E^2 \tag{5.7}$$

5.6. CALCUL DE FORCES ÉLECTROSTATIQUES À PARTIR DE L'ÉNERGIE

Lorsqu'on cherche à calculer les forces électrostatiques à partir de l'énergie emmagasinée dans un système, deux cas peuvent se présenter :

la charge reste constante,

le potentiel reste constant.

5.6.1 Calcul de la force, à charge constante

co.uk C'est le cas d'un condensateur qui serait préalablement hargé, puis isolé et abandonné aux forces électrostatiques du Sax ent entre les armatures. À chaque travail élémentaire d'électronat Correspond une variation dE_{p} de l'énergie en magasinée. Le s tant isolé, la conservaame tion de l'énergie inplique que : $dW + dE_p = 0$

Et comme d $W = \vec{F} \cdot \vec{d\ell}$, on en déduit l'expression de la force électrostatique :

$$\vec{F} = -\overrightarrow{\text{grad}} E_{\text{p}}$$
 (à charge constante) (5.8)

en tout point de la distribution de charge.

5.6.2 Calcul de la force, à potentiel constant

C'est le cas où le condensateur chargé n'est plus isolé, mais reste relié à une source en permanence.

Dans ce cas, à tout travail élémentaire dW des forces électrostatiques correspondent à la fois une variation dE_p de l'énergie emmagasinée, et une énergie dE_s dépensée par la source pour maintenir le potentiel constant.

5.5. *1*) Un condensateur de capacité C_1 est chargé sous une différence de potentiel V_1 , puis isolé.

Donner les expressions de la charge Q_0 et de l'énergie W_0 emmagasinées dans le condensateur C_1 à la fin de l'opération.

2) On décharge le condensateur C_1 dans un condensateur C_2 , initialement neutre, à travers une résistance R. Calculer, à l'équilibre, en fonction de Q_0 , C_1 et C_2 :

a) les charges Q_1 et Q_2 prises par les deux condensateurs,

b) les différences de potentiel V'_1 et V'_2 aux bornes des deux condensateurs,

c) les énergies W_1 et W_2 emmagasinées dans les deux condensateurs.

3) a) Écrire la variation de q_1 en fonction du temps au cours de la décharge de C_1 dans le circuit.

b) En déduire l'énergie W_J dissipée par effet Joule dans la résistance R, en fonction de Q_0 , C_1 et C_2 , pendant la décharge de C_1 .

c) Montrer que la variation d'énergie du système entre l'état initial et l'état final correspond à l'énergie dissipée par effet Joule.

5.6. A) L'énergie producte le d'interaction ontre les Coax atomes d'une molécule diatomique d'hydrogène (III) est représentée par une expression de la forme : $E_{\rm p}(x = \frac{b}{x^0} + \frac{b}{x^{12}} \text{ (potentiel de Lennard-Jones)}$

où x représente la distance séparant les deux atomes, et a et b sont deux constantes positives.

1) Tracer la courbe $E_p(x)$. Déterminer la valeur x_0 pour laquelle le système est en équilibre stable. Quelle est l'énergie potentielle $E_p(x_0)$ correspondante ?

2) Pour une molécule d'iodure d'hydrogène, l'énergie de dissociation est $E_{\rm D} = 5 \cdot 10^{-19}$ joule et la distance $x_0 = 1,64$ Å.

- Quelle est la relation entre E_D et $E_p(x_0)$?

– Quelles sont les valeurs des constantes a et b ?

B) On considère maintenant que la liaison entre les deux atomes de masse m_1 (pour l'hydrogène) et m_2 (pour l'iode) est équivalente à un ressort de rappel k, dont la longueur au repos est égale à la longueur x_0 de la liaison à l'équilibre. Les déplacements respectifs de m_1 et m_2 par rapport à leurs positions d'équilibre sont x_1 et $(x_2 - x_0)$.

1) Écrire les équations différentielles vérifiées par x_1 et x_2 . Déduire de ces deux équations l'équation différentielle vérifiée par la variable $x = x_2 - x_1$. On posera $\frac{1}{\mu} = \frac{1}{m_1} + \frac{1}{m_2}$ (μ est la masse réduite de l'oscillateur).

2) Déterminer la fréquence propre angulaire ω_0 de vibration de la molécule, c'est-àdire la fréquence du mouvement relatif de la masse m_2 par rapport à la masse m_1 .

C) On revient à la molécule d'iodure d'hydrogène. En utilisant un développement limité au deuxième ordre de $E_p(x)$ au voisinage de $x = x_0$, montrer que la force de liaison est effectivement une force de rappel de la forme $F_x = -k(x - x_0)$ 14 pulsation $ω_0$, - la fréquence $ν_0$ des obtilators. On denne: $m = m_{\rm H} = 1.67$

CORRIGÉS

5.1. 1) Par suite de la symétrie, le champ en tout point M est radial et ne dépend que de r = HM. On prend pour surface de Gauss une surface cylindrique de rayon r, de hauteur h et d'axe Δ passant par le point M où l'on veut calculer E.

 M_3

 O_1

 P_2

2) L'énergie potentielle du dipôle \vec{P}_2 dans le champ de \vec{P}_1 est :

$$E_{\rm p} = -\vec{P}_2 \cdot \vec{E}_1$$

(où \vec{E}_1 est le champ créé en M_3 par le dipôle \vec{P}_1). Or, d'après la 1^{re} question :

Champ créé en M par le dipôle placé en N' :

$$\vec{E}_{N'} = \frac{2K\dot{P}}{d^3}$$

Le champ \vec{E} créé par les molécules situées de part et d'autre de *M* est donc :

$$\vec{E} = \vec{E}_N + \vec{E}_{N'} = \frac{2KP}{d^3}$$

En groupant les dipôles deux par deux, on obtient pour le champ total en M :

$$\vec{E}_T = \frac{4K\vec{P}}{d^3} + \frac{4K\vec{P}}{(2d)^3} + \frac{4K\vec{P}}{(3d^3)} + \dots$$
$$= \frac{4K\vec{P}}{d^3} \left[1 + \frac{1}{2^3} + \frac{1}{3^3} + \dots \right] = 4.8 \frac{K\vec{P}}{d^3}$$

ou encore, puisque $\rho = -ne$ où *n* est le nombre d'électrons par unité de volume et *e* la valeur absolue de la charge de l'électron :

$$\vec{j} = -ne\,\vec{v} \tag{6.2}$$

 $\mathrm{d}S$

6.2.2 L'intensité du courant électrique

Soit Φ le flux de \vec{j} à travers une surface (S) orientée (s'appuyant sur un contour (C) orienté).

 $\Phi = \int_{S} \vec{j} \cdot \vec{dS}$ On a :

Le flux élémentaire

$$\vec{j} \cdot \vec{\mathrm{d}S} = \rho \vec{v} \cdot \vec{\mathrm{d}S}$$

représente la charge contenue dans le volume du cylindre de lon me puyant sur dS; c'est aussi la charge qui traverse dS peren d'unité de temps. On peut donc écrire :

Previe' définissant ainsi l'intensité du courant qui traverse (S), laquelle s'exprime en **ampère** (A) : $1 A = 1 C \cdot s^{-1}$.

6.2.3 Lignes et tube de courant

Une ligne de courant est définie comme une ligne tangente en tout point au vecteur densité de courant \vec{i} .

Un tube de courant est formé par l'ensemble des lignes de courant s'appuyant sur un contour fermé (C).

Ses génératrices sont donc tangentes à \vec{i} en tout point.

(6.3)

Vitesse d'agitation thermique

Dans ce mouvement tout à fait aléatoire, l'énergie moyenne d'un électron est de l'ordre de quelques eV. Si on identifie une énergie de 1 eV à l'énergie cinétique de l'électron, on trouve :

$$\varepsilon = \frac{1}{2} m v_0^2 \implies v_0 = \sqrt{\frac{2\varepsilon}{m}}$$
$$v_0 = \sqrt{\frac{2\times 1.6 \cdot 10^{-19}}{9.1 \cdot 10^{-31}}} = 0.6 \cdot 10^6 \,\mathrm{m \cdot s^{-1}}$$

À cette vitesse ne correspond aucun courant électrique : l'agitation thermique étant désordonnée, la vitesse moyenne vectorielle correspondante est nulle.

Vitesse de dérive

Soit un fil de cuivre parcouru par un courant de densité 10 A/mm². Pour le <u>l</u>ę.co.u cuivre, on a :

masse atomique M = 63, 6 g

masse volumique μ En admettant que chaque atomi libre en moyenne un 210 trouver le nombre p d'électrons libres parm³, soi . libre, on peut

où \mathcal{N} est le nombre d'Avogadro. On trouve

$$n = \frac{8.8 \cdot 10^3 \times 6.02 \cdot 10^{23}}{63.6 \cdot 10^{-3}} = 0.83 \cdot 10^{29} \text{ électrons } \text{·m}^{-3}$$

On en déduit :

$$|\rho| = ne = 0.83 \times 10^{29} \times 1.6 \cdot 10^{-19} = 1.33 \cdot 10^{10} \,\mathrm{C \cdot m^{-3}}$$
$$v = \frac{j}{\rho} = \frac{10 \cdot 10^6}{1.33 \cdot 10^{10}} = 7.5 \cdot 10^{-4} \,m \cdot s^{-1}$$

La vitesse de dérive des électrons est très faible devant la vitesse d'agitation thermique.

À l'inverse des conducteurs, les semi-conducteurs intrinsèques ont une conductivité σ qui augmente avec la température. À T = 0 °K, cette conductivité est nulle.

Dans le cas des matériaux supraconducteurs, la conductivité devient infinie à des températures très basses ($T \leq 7$ °K pour le plomb).

6.5. RÉSISTANCE ÉLECTRIQUE : LOI D'OHM MACROSCOPIQUE

Considérons un conducteur limité par deux sections (S_A) et (S_B) , portées respectivement aux potentiels V_A et V_B , grâce à un générateur (G) fermant le circuit.

On peut écrire :

$$V_A - V_B = \int_{\widehat{AB}} \vec{E} \cdot \vec{d\ell} = \int_{\widehat{AB}} \frac{\vec{j}}{\sigma} \cdot \vec{d\ell}$$

En régime stationnaire on peut définir la densité de courante pun comme :

où *I* est l'intensité du courant et S l'aire de la section are ce point.

En introduisant la résistance *R* du conducteur donnée par :

$$R = \frac{1}{\sigma} \int_{\widehat{AB}} \frac{\mathrm{d}\ell}{S}$$

qui s'exprime en ohms (Ω) on obtient :

$$V_A - V_B = RI \tag{6.14}$$

 (S_A)

G

qui constitue la loi d'Ohm macroscopique.

Cas d'un conducteur cylindrique

Dans ce cas, la section est constante, on a :
$$R = \frac{1}{\sigma S} \int_{\widehat{AB}} d\ell = \frac{1}{\sigma S} \frac{\ell}{S}$$

$$R = \frac{\ell}{\sigma S} \tag{6.15}$$

 (S_B)

u conducteur en

Résistance équivalente : $R = R_1 + R_2$ $R = \sum_k R_k$ (6.16)

6.6.2 Résistances en parallèle

On a : $V_A - V_B = R_1 I_1 = R_2 I_2$ $= R(I_1 + I_2)$ $\frac{R}{R_1} = \frac{I_1}{I_1 + I_2}$ et $\frac{R}{R_2} = \frac{I_2}{I_1 + I_2}$ Par conséquent : $\frac{R}{R_1} + \frac{R}{R_2} = 1$ et $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$ D'où : le.co.u (6.17)6.7. RÔ**IT ON** EUR FOR OTRICE Soit un générateur (G) appliquant une d.d.p. $V_A - V_B > 0$ aux bornes d'un conducteur AB.En régime stationnaire ou quasi stationnaire, on a div $\vec{j} = 0$ en tous les points du circuit, y compris dans le générateur, et les lignes de V_B champ sont des courbes fermées. (G)Si le conducteur était fermé sur lui-même, on aurait :

$$\oint \vec{E} \cdot \vec{d\ell} = 0 \quad \text{puisque} \quad \vec{E} = -\overrightarrow{\text{grad}} V$$

soit :

$$\oint \frac{\vec{j}}{\sigma} \cdot \vec{d\ell} = 0 \quad \text{ce qui entraînerait} \quad \vec{j} = \vec{0}$$

6.9. ASPECT ÉNERGÉTIQUE : LOI DE JOULE

6.9.1 Formulation locale

Reprenons l'équation du mouvement d'une charge q d'un conducteur sous l'action d'un champ appliqué \vec{E} (cf. 6.4.2) :

$$m\frac{\mathrm{d}\vec{v}}{\mathrm{d}t} + \frac{m}{\tau}\vec{v} = q\vec{E}$$

En multipliant par \vec{v} , il vient :

$$m\vec{v}\cdot\frac{\mathrm{d}\vec{v}}{\mathrm{d}t}+\frac{m}{\tau}\,\vec{v}^2=q\,\vec{E}\cdot\vec{v}$$

 $\vec{E} \cdot \vec{v} = \vec{E} \cdot \frac{\vec{d\ell}}{dt} = -\frac{dV}{dt}$ car $\vec{E} \cdot \vec{d\ell} = -dV$ Or: ale.co.uk

où V est le potentiel. On en déduit :

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{1}{2} m v^2 + q V \right] = \frac{m v^2}{25}$$

L'expression entre crochets nicett au re que l'énergie tradéle la charge q, composée de l'énergie cinétique $\frac{1}{2}mt^2$ At de renergie potentielle qV. Par conséquent, la pur car consipée par frottement par la charge q est $\frac{mv^2}{\tau}$. On en déduit que la puissance dissipée par unité de volume est :

$$p = \frac{nmv^2}{\tau}$$

 $v = \frac{J}{na}$ où *n* est le nombre de porteurs par unité de volume, et comme et que $\sigma = \frac{nq^2\tau}{m}$, on peut écrire :

$$p = \frac{m}{nq^{2}\tau} j^{2} = \frac{j^{2}}{\sigma} = \vec{j} \cdot \vec{E}$$

d'où
$$p = \sigma E^{2}$$
 (6.24)

Corrigés

6.2. 1) La norme du champ est :

$$E = \frac{u}{d}$$

$$E = \frac{10}{0,2} = 50 \text{ V}$$

$$(\overline{A}) = \overline{E} = (\overline{C})$$

$$d = 20 \text{ cm}$$

Il est orienté de l'anode A vers la cathode C.

2) Une molécule de SO₄Na₂ se dissocie en donnant :

$$SO_4Na_2 \longrightarrow SO_4^{2-} + 2NA^+$$

La solution étant décimolaire, on a $\frac{1}{10}$ de mole par litre, soit $\frac{N}{10} \times 10^3$ molécules par m³, d'où :

$$n_{-} = 10^{2} \mathcal{N} \qquad \text{soit} \qquad n_{-} = 6,02 \cdot 10^{25} \text{ m}^{-3}$$
$$n_{+} = 2 \cdot 10^{2} \mathcal{N} = 2 n_{-} \qquad \text{soit} \qquad n_{+} = 12 c_{-} \cdot 10^{25} \text{ m}^{-3}$$

Remarque : Les cations portent la charge, $q_{-} = -2e$. La solution dissociée conserve la neutralité électrone .

$$n_+q_+ + n_-q_- = (12 \cdot j) + n_-(-2e) = 0$$

D) Leecteur densité despirant est :

$$\vec{j} = n_+q_+\mu_+\vec{E} + n_-q_-\mu_-\vec{E}$$

soit

$$\vec{j} = n_+ q_+ (\mu_+ + \mu_-) \vec{E} = 2n_- e(\mu_+ + \mu_-) \vec{E}$$
$$j = 125,22 \text{ A} \cdot \text{m}^{-2} \text{ orienté dans le sens } \vec{E}$$

4) On en déduit la résistance R de la solution :

$$R = \frac{u}{jS} \implies R = 26,62 \ \Omega$$

6.3. 1) Le nombre d'atomes de germanium par m^3 est :

$$N = \frac{10^3 \mathrm{d}.\mathcal{M}}{M}$$

u = 10 V

h.

0

FIG. 7.8

On note que $i(0^+) = E/R$ n'est pas nul : l'intensité du courant subit théoriquement une discontinuité au départ de la charge. En fait, le circuit possède toujours une inductance aussi faible soit-elle et il n'y a pas de véritable discontinuité.

■ Courant de décharge du condensateur

Lorsque l'on court-circuite le condensateur, initialement sous la tension constante E, la source de tension s'écrit :

$$e = E \quad \text{pour} \quad t < 0$$
$$e = 0 \quad \text{pour} \quad t > 0$$

Avec les conventions de la figure, on a :

dont la solution générale est :

$$u(t) = A \,\mathrm{e}^{-t/\tau}$$

La tension étant continue, on a u(0) = E et, par suite :

$$u(t) = E \,\mathrm{e}^{-t/\tau} \tag{7.9}$$

On a de même i = -dq/dt = -Cdq/dt, ce qui donne en explicitant τ :

$$i(t) = \frac{E}{R} e^{-t/\tau}$$
(7.10)

Or,

$$\widetilde{i} = \frac{\mathrm{d}\widetilde{q}}{\mathrm{d}t} = i\omega \ \widetilde{Q}_{\mathrm{m}} \,\mathrm{e}^{j\,\omega t} \implies \widetilde{i} = \widetilde{I}_{\mathrm{m}} \,\mathrm{e}^{j\,\omega t} \quad \text{avec} \quad \widetilde{I}_{\mathrm{m}} = j\omega \ \widetilde{Q}_{\mathrm{m}}$$

Il vient ainsi, après division des deux membres par C :

$$\left[R+j\left(L\omega-\frac{1}{C\omega}\right)\right]\widetilde{I}_{\rm m}=U_{\rm m} \tag{7.31}$$

La quantité :

$$\widetilde{Z} = R + j\left(L\omega - \frac{1}{C\omega}\right) \tag{7.32}$$

 $U_m = \widetilde{Z} \ \widetilde{I}_m$

s'appelle *l'impédance complexe* du dipôle.

L'expression (7.31) généralise la loi d'Ohm pour un conducteur ohmique :

(loi d'Ohm complexe)

COZUK On vérifie que l'on retrouve la loi d'Ohm habitu de salen supprime le condensateur et l'inductance. Notez que l'intest me se mesure en chm dans le système international.

On peut écrire l'impédance complexe

avec
$$Z = \sqrt{R^2 + \left(L\omega + \frac{1}{C\omega}\right)^2}$$
 et $\varphi = \arctan\frac{L\omega - \frac{1}{C\omega}}{R}$ (7.34)

Par conséquent $\tilde{I}_{\rm m} = U_{\rm m}/\tilde{Z} = I_{\rm m} \,{\rm e}^{-j\varphi}$ de sorte que l'on a :

$$i(t) = \operatorname{Re}\left(I_{\mathrm{m}} \operatorname{e}^{-j\varphi} \operatorname{e}^{j\omega t}\right) = I_{\mathrm{m}} \cos \left(\omega t - \varphi\right)$$

L'expression (7.32) montre que φ est compris entre $-\pi/2$ et $\pi/2$.

Le module de l'impédance complexe permet de calculer l'amplitude du courant $I_{\rm m} = U_{\rm m}/Z$ et son argument φ est le déphasage de la tension appliquée au dipôle par rapport au courant.

La loi d'Ohm complexe a une conséquence importante :

Les lois des circuits linéaires en courant continu s'appliquent en régime sinusoïdal à des associations quelconques de dipôles élémentaires R, L ou C, à condition de considérer les *amplitudes complexes* des courants et des tensions et les *impédances complexes* de ces éléments.

En particulier, les lois des associations de résistances vues au chapitre **6.6** s'appliquent aux impédances complexes (mais pas à leurs modules !) :

Association en série

Impédance équivalente : $\widetilde{Z} = \widetilde{Z}_1 + \widetilde{Z}_2$

■ Association en parallèle

Impédance équivalente :
$$\frac{1}{\widetilde{Z}} = \frac{1}{\widetilde{Z}_1} + \frac{1}{\widetilde{Z}_2}$$
 (cf. figure 7.14)

■ Loi des nœuds. Admittance

La loi d'Ohm peut s'écrire de la façon équivalente suivante, commode for écrire la loi des nœuds aux bornes de plusieurs dipôles en parallite.

La figure 7.15 représente les impédances des dipôles linéaires élémentaires (résistance, inductance pure, capacité pure).

L'impédance (l'admittance) est réelle positive pour un conducteur ohmique, imaginaire pure pour une inductance pure et pour une capacité pure ; l'inductance déphase la tension de $+\pi/2$ sur le courant (quadrature avance), la capacité déphase la tension de $-\pi/2$ (quadrature retard).

FIG. 7.15

On trouve $Z = \sqrt{4 \cdot 10^4 + 4 \cdot 10^2} \simeq 200 \ \Omega$ et $\tan \varphi = 0.2$, soit $\varphi = 11.3^\circ$ $\simeq \pi/8$: l'avance de phase de la tension sur le courant est faible et c'est la résistance qui joue un rôle prédominant ($L\omega \ll r$).

■ Résonance d'intensité dans le dipôle R, L, C

Lorsque l'on fait varier la pulsation, l'amplitude de l'intensité $I_{\rm m} = U_{\rm m}/Z$ passe par un maximum $I_{\rm M}$ quand Z est minimal, c'est-à-dire pour la pulsation de résonance ω_0 correspondant à :

$$L\omega_0 = \frac{1}{C\omega_0}$$
 soit $\omega_0 = \frac{1}{\sqrt{LC}}$ (7.37)

On a donc à la résonance :

$$\widetilde{Z} = R$$
 et $\varphi = 0$ (7.38)

À la résonance d'intensité, le courant et la tension sont probale, Empé-dance du dipôle est réelle et égale à sa résistance **S** Par conséquent : $I_{\rm M} = \frac{U}{R}$

Par conséquent :

Disperance du condinant $\mathbf{0}$ de la bobine sont égales. Si la resistance est inférieure à celle du condensateur, alors les tensions aux bornes de celui-ci et de la bobine seront supérieures à la tension appliquée $U_{\rm m}$ (surtension). Le rapport de surtension est :

$$\frac{U_{\rm C}}{U_{\rm m}} = \frac{I_{\rm M}/C\omega_0}{RI_{\rm M}} = \frac{1}{RC\omega_0} = \frac{L\omega_0}{R}$$

Ainsi, le rapport de surtension à la résonance est égal au facteur de qualité Qdu circuit du dipôle et la pulsation de résonance coïncide avec la pulsation propre des oscillations libres du circuit.

7.3.3 Puissance moyenne consommée dans un dipôle

Expression générale

En régime stationnaire (ou quasi stationnaire) lorsqu'une charge dq entre par la borne A d'un dipôle pendant l'intervalle de temps dt, il ressort la même Notez bien que le théorème n'est pas applicable sous cette forme si l'une des branches aboutissant en *N* est active, en particulier par exemple si elle impose une tension donnée (ce qui suppose la présence d'une source de tension).

Prenez garde également à ne pas oublier de compter au dénominateur les impédances des branches correspondant à des potentiels \widetilde{V}_k nuls.

Théorème de Thévenin

Le courant qui circule dans une branche AB d'un réseau linéaire est le même que si la branche AB était alimentée par une source de tension \tilde{E}_t égale à la tension obtenue entre A et B en supprimant la branche AB, en série avec une impédance \tilde{Z}_R égale à l'impédance équivalente entre A et B dans les mêmes conditions.

Ce théorème est utile pour trouver l'intensité du courant dans une branche particulière du réseau.

Théorème de Norton

Le courant qui circule dans une branche *AB* d'un réseau linéaire est le même que si la branche *AB* était alimentée par une source de courant d'intensité \tilde{I}_n égale à l'intensité entre *A* et *B* en remplaçant la branche *AB* par un court-circuit, en parallèle avec une impédance \tilde{Z}_R égale à l'impédance équivalente entre *A* et *B* dans les mêmes conditions.

Ce théorème est surtout utilisé en électronique dans des circuits comportant des transistors, car ceux-ci font office de sources de courant.

2) On désire éliminer des signaux de fréquence égale à 500 Hz dans un circuit. On intercale pour cela dans le circuit un dipôle constitué par une bobine d'inductance 0,25 H et de résistance 16 Ω en parallèle avec un condensateur.

Quelle doit être la capacité de celui-ci ? Quelle est alors l'impédance de ce dipôle ?

7.7. Étude d'une branche dans un circuit

Dans le circuit de la figure 7.22, on donne $i_2 = I_0 \cos \omega t$ ainsi que L, C, R. Calculer u(t), $i_1(t)$ et le déphasage φ de u par rapport à la tension v aux bornes du condensateur. On exprimera les phases de u(t) et $i_1(t)$ en fonction de φ .

FIG. 7.22

7.9. Pont déphaseur

Une tension $v(t) = V_0 \cos \omega t$ est appliquée entre les points *A* et *B* de la figure 7.24, tandis que la tension $u(t) = U_0 \cos (\omega t - \varphi)$ est prélevée entre les points *M* et *N*.

1) Montrer que $V_0 = U_0$ en circuit ouvert entre *M* et *N* quand $RC = R_1C_1$.

2) Trouver le déphasage φ lorsque cette condition est réalisée. Quelle est la valeur de φ si $R = 1/C\omega$?

FIG. 7.24

CORRIGÉS

7.1. Surtension aux bornes d'un interrupteur

1) La loi des mailles s'écrit :

$$L\frac{\mathrm{d}i}{\mathrm{d}t} + Ri - E = u(t) = \frac{q}{C}$$

soit, avec i = dq/dt = Cdu/dt et $\tau = L/R$:

$$\frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + \frac{R}{L}\frac{\mathrm{d}u}{\mathrm{d}t} + \frac{u}{LC} = E$$

C étant très faible, le discriminant de l'équation caractéristique de l'équation homogène est certainement négatif. On a donc une solution de la forme :

$$u(t) = E + (A \cos \omega t + B \sin \omega t) e^{-\frac{t}{\tau}}$$

Avant l'ouverture de l'interrupteur l'inductance ne joue aucun rôle, le cur ant est continu et a pour intensité I = E/R. L'inductance impore a cur truité du courant, c'est-à -dire de du/dt, et donc *a fortiori* celle de la travier *u*:

$$\frac{du}{dt} = \left[\left(-\frac{1}{\tau} + F \cdot B \right) \cos \omega t + \left(-\frac{1}{\tau} + F \cdot D \right) \cos \omega t + \left(-\frac{1}{\tau} + F \cdot D \right) \cos \omega t \right] e^{-\frac{t}{\tau}}$$
Soit à $E = E + A$ $A = 0$ (continuité de u)
 $i(0) = C \frac{du}{dt}(0) \implies \frac{E}{R} = C \omega B$ (continuité de i)

En définitive :

$$u(t) = E\left(1 + \frac{1}{RC\omega}\sin\omega t\right) e^{-\frac{t}{\tau}}$$

2) La constante de temps du circuit est :

$$\tau = \frac{L}{R} = \frac{10^{-5}}{10^2}$$
 soit $\tau \simeq 6 \cdot 10^{-7}$ s.

Si l'on néglige l'amortissement, la période des oscillations est :

$$T_0 = 2\pi\sqrt{LC} = 2\pi\sqrt{10^{-5} \times 10^{-13}}$$
 soit $T_0 \simeq 6 \cdot 10^{-9}$ s.

Corrigés

Or,

$$\widetilde{I}_2 = jC\omega\widetilde{V} \implies \widetilde{U} = \left(R + \frac{1}{jC\omega}\right)\widetilde{V}$$

Le déphasage φ entre u(t) et v(t) est donc :

$$\varphi = \arctan{(RC\omega)}$$

Par suite, $\arg \widetilde{U} = \varphi - \pi/2$:

$$u(t) = \operatorname{Re}\left(\widetilde{U} e^{i\omega t}\right) = U \cos(\omega t + \varphi - \pi/2)$$

soit enfin :

$$u(t) = \frac{\sqrt{1 + (RC\omega)^2}}{C\omega} I_0 \sin(\omega t + \varphi)$$

Par ailleurs, on a :

$$\widetilde{I}_{1} = \frac{\widetilde{U}}{jL\omega} = -\left(\frac{1+jRC\omega}{LC\omega^{2}}\right) L = \mathbf{CO} \cdot \mathbf{UK}$$

$$= -\frac{\sqrt{1+RU(0)}}{LC\omega^{2}} I_{0} e^{i\varphi} \mathbf{260}$$
Finalementer protant la partie réelle de $\widetilde{I}_{1} e^{i\varphi t}$, il vient :

$$\widetilde{I}_{1}(t) = -\frac{\sqrt{1+(RC\omega)^{2}}}{LC\omega^{2}} I_{0} \cos(\omega t + \varphi)$$

Comme on pouvait s'y attendre, la tension aux bornes de l'inductance supposée pure est en quadrature avance sur le courant qui la traverse.

7.8. Filtre

Nous allons appliquer le principe de superposition, la tension d'entrée $u_1(t)$ étant la somme algébrique de deux tensions sinusoïdales de pulsations différentes, soit ω et ω' . La figure 7.33 indique les sens positifs choisis pour les courants (représentés par leurs amplitudes complexes) et tient compte de la loi des nœuds. Notez que, le circuit étant ouvert entre P et M (il n'y a pas de circuit extérieur), le courant dans les branches NP et PM est le même, ce qui n'est pas le cas dans les branches BA et AN car la tension entre A et B est imposée.

1

Deuxième méthode

Il était ici tout particulièrement indiqué d'utiliser le théorème de Millmann, ce qui conduit plus simplement au résultat. En posant $\tilde{V}_B = \tilde{V}_M = 0$, la somme des admittances des branches aboutissant au nœud N est :

$$\widetilde{Y}_N = \frac{1}{R} + \frac{1}{R} + j C\omega = \frac{2}{R} + j C\omega \qquad \text{d'où}$$
$$\widetilde{V}_N = \frac{\widetilde{V}_A/R + \widetilde{V}_P/R}{2/R + j C\omega} = \frac{\widetilde{U}_1 + \widetilde{U}_2}{2 + j RC\omega}$$

De même pour le nœud P :

$$\widetilde{Y}_{P} = \frac{1}{R} + j C\omega = \frac{1}{R} + j C\omega \qquad \text{d'où}$$
$$\widetilde{V}_{P} = \frac{\widetilde{V}_{N}/R + 0 \times j C\omega}{1/R + j C\omega} = \frac{\widetilde{U}_{1} + \widetilde{U}_{2}}{(2 + j RC\omega)(1 + j RC\omega)}$$

Comme $\widetilde{V}_P = \widetilde{U}_2$, il vient :

$$\widetilde{U}_{1} + \widetilde{U}_{2} = \widetilde{U}_{2} \left(2 - R^{2}C^{2}\omega^{2} + 3jRQ \right) \mathbf{E}$$

$$\widetilde{U}_{2} = \frac{\widetilde{U}_{1}}{1 R^{2}CU + 3jRC\omega} \mathbf{E}$$
troblemu plas haut.

C'est bien le résultatroblem plus haut.

On aurait ou B uné d'utiliser le théorème de Millmann au nœud A plutôt qu'en P, What ce trest pas possible dans circuit n'est pas ouvert entre A et B: on ne possède aucune information cur té dipôle extérieur AB, qui est ici équivalent à un générateur de Thévenin.

7.9. Pont déphaseur

1) Cherchons la relation entre les amplitudes complexes \widetilde{U} et \widetilde{V} des tensions u(t) et v(t). En circuit ouvert entre M et N, le courant est le même dans les dipôles AM et MB d'une part, dans les dipôles AN et NB d'autre part et l'on a (cf. figure 7.34) :

$$\widetilde{V} = R\widetilde{I} + \frac{\widetilde{I}}{j C\omega} = \frac{\widetilde{I}_1}{j C_1 \omega} + R_1 \widetilde{I}_1$$
$$\widetilde{U} = -R\widetilde{I} + \frac{\widetilde{I}_1}{j C_1 \omega}$$

FIG. 7.34

b) Quelle est la charge Q portée par la sphère (S) ?

c) Quel est le champ électrique \vec{E} en un point *M* de la sphère ?

d) En déduire la densité surfacique de charge portée par la sphère ?

3) On maintient la charge q à la distance D de (S) mais cette fois, la sphère conductrice, initialement neutre, est isolée. En appliquant le théorème de superposition, calculer le potentiel de cette sphère.

Problème n° 5

Quatre plaques métalliques P_1 , P_1 , P_2 , P_2' sont disposées comme l'indique la figure. On a sonilera ces plaques à des plans illimités.

Les lames métalliques consuffisamment minces pour être perméables aux électrons. (P'_1) et (P_1) sont portés au potentiel V_1 , (P_2) et (P'_2) au potentiel V_2 avec $V_2 > V_1 > 0$.

Une source émet des électrons vers (P'_1) avec une vitesse initiale \vec{v}_0 . L'origine des potentiels sera prise sur la source.

Un électron dont la trajectoire rectiligne fait l'angle *i* avec x'Ox, arrive au point *I* sur (P'_1) .

1) On admet que le potentiel ne dépend que de *x*. Sachant que le potentiel V(x) vérifie l'équation de Laplace $\frac{d^2 V(x)}{dx^2} = 0$, calculer V(x) et tracer la courbe V(x). Tracer sur le même graphique la courbe représentant la norme du champ électrique E(x). Quelle est la nature de la trajectoire de l'électron entre les lames (P'_1) et (P_1) , (P_1) et (P_2) , (P_2) et (P'_2) ?

Par continuité du potentiel en x_1 et en x_2 :

$$V(x_1) = V_1 = ax_1 + b$$

$$V(x_2) = V_2 = ax_2 + b$$

$$a = \frac{V_2 - V_1}{x_2 - x_1} \quad \text{et} \quad b = \frac{V_2 x_1 - V_1 x_2}{x_1 - x_2}$$

Ainsi, pour $x_1 \leq x \leq x_2$ on a :

$$V(x) = \frac{V_2 - V_1}{x_2 - x_1}x + \frac{V_2 x_1 - V_1 x_2}{x_1 - x_2}$$

L'équation $\vec{E} = -\overrightarrow{\text{grad}} V$ donne $E_x(x) = -\frac{dV(x)}{dx}$

On remarque que le champ \vec{E} est discontinu en $x = x_1$ et $x = x_2$.

Nature des trajectoires :

La force $\vec{F} = -e\vec{E}$ qui agit sur l'électron est opposée à \vec{E} : pour $0 < x < x_1$ $F_x = 0$ pour $x_1 < x < x_2$ $F_x = e\frac{V_2 - V_1}{x_2 - x_1} (> 0)$ En égalant les valeurs de V_y pour un point $x \in [0, x_1]$ et un point $x' \in [x_2, x'_2]$ on obtient :

$$v_1 \sin i_1 = v_2 \sin i_2 \implies \sqrt{V_1} \sin i_1 = \sqrt{V_2} \sin i_2$$

En comparant avec la loi de Descartes en Optique :

$$n_1 \sin i_1 = n_2 \sin i_2$$

on en déduit la relation de correspondance entre l'indice de réfraction n et le potentiel V:

$$n = \sqrt{V}$$

Si les deux plans P_1 et P_2 sont suffisamment rapprochés pour que l'on puisse confondre I_1 et I_2 , on voit que la trajectoire de l'électron subit une réfraction là où le potentiel change de valeur.

4) La relation $\sqrt{V_1} \sin i_1 = \sqrt{V_2} \sin i_2$ montre que si $V_2 > 4$ aors $i_2 < i_1$, l'électron se rapproche de l'axe x'Ox. Un dispositif terrer de deux grilles rapprochées et portées à des potentiels julic ets ment choisis primettra de focaliser un faisceau d'électrons da s'un microscope électron q e

Probleme n° 6. Ét no Buoreseau capacitif

1) La loi des nœuds en B donne la relation demandée :

$$i_1 + i_2 = i_3$$
 (1)

2) En considérant successivement les trois dipôles AB on peut écrire trois expressions de $V_A - V_B$, ce qui donne les deux relations suivantes :

$$C = \begin{bmatrix} a_{1} & a_{1} \\ a_{2} \\ c \\ \hline q_{0} \\ A \end{bmatrix} = \begin{bmatrix} a_{1} & a_{2} \\ a_{2} \\ \hline q_{1} \\ A \end{bmatrix}$$

$$-\frac{q_1}{C} + Ri_1 = -Ri_3$$
(2)
$$-\frac{q_2}{C} + Ri_2 = -Ri_3$$
(3)

10) Graphe de U_n/U_0 en fonction de ω :

Fig. 5

Preview from Notesale.co.uk Page 260 of 266