Units for Measuring Running
Time

UK
* We'd like to use %@ﬁ\%'%ﬁat does not depend on extraneous
factors su@ﬁa@%%sg’é@@ of a particular computer, dependence on the
que\:}i@ﬂé}% a Pr¥fgram implementing the algorithm and of the compiler
used, and the difficulty of clocking the actual running time of the
program.

* We usually focus on basic operations that the algorithm executes, and
compute the number of times the basic operations are executed.

Worst-, Best-, and Average-Case
Complexity

* The worst-case complexity of an algorithm is its complexity for the worst-case
input of size n, which is an input of size n for which the algorithm runs the
longest among all possible \%R;ms\é) that size.

NOte>C

+ Whaﬁ\té\geﬁ&@g\%t@d)ﬂg‘gs the worst-case analysis provide on the running
ke

pao

* The best-case complexity of an algorithm is its complexity for the best-case
input of size n, which is an input of size n for which the algorithm runs the
fastest among all possible inputs of that size.

* Neither of these two types of analyses provide the necessary information
about an algorithm’s behavior on a “typical” or “random” input. This is the
information that the average-case complexity seeks to provide.

Worst-case Complexity: Example 2

AlgorithmZ Matn u@@l}é\ﬁ%on.

Input: T ..n—1,0...k—1]and B[0...k—1,0...m —1].
%y@ﬁ\ tnx
\N ri O fdo
P(e\,\e]—OtOm—ldo
Cli,j] < 0;
4 forl=0tok—1do
5 | Cli,] < Cli, 3] + A[3,1] - BLL, ji;

6 return C

Asymptotic Analysis of Algorithms

Algorithm 3: LinearSearch.

Input: An array A[0...n — 1] of integers, and an integer x.
Output: The index of the first element of A that matches x, or —1 if there are no matching elements.

11+ 0;

2 while i < nand Ali] # = do u\L

3 Li(—z’—kl; e_CO'
sa\

1 if 7+ > n then O‘e

; qu—\l—\};{(om 00&25

Algorithm 1: IsBipartite.
Input: Undirected graph g = (V, E).

Algorithm 4: MatrixMultiplication. Output: True if g is bipartite, and False otherwise.
Input: Two matrices A[0...n—1,0...k—1]and B[0...k —1,0...m —1]. 1 foreach Non-empty subset V1 C V do
Output: Matrix C = AB. 2 | Va< VAV
1 fori < Oton —1do 3 bipartite < True;
2 forj «+ Otom — 1do 4 | foreach Edge {u,v} € E' do
3 Cli, j] < O; 5 if {u,v} C Vjor {u,v} C V, then
4 forl <+ Otok —1do 6 bipartite < False;
5 L © 41 <= Clioal 3= 206, 1= B 4 7 Break;
j re_turn o 8 if bipartite = True then
9 return True;

10 return False;

20

