Major toxicities of cytotoxic cancer chemotherapy

- Haematological toxicity - most important dose-limiting toxicity for the majority of cytotoxics
 - Myelosuppression - risk of infection
 - Thrombocytopenia (platelets) risk of haemorrhage - may be delayed with some drugs (mitomycin C, nitrosoureas) or cumulative (chlorambucil, melphalan)
- Gastrointestinal toxicity
 - Nausea and vomiting: maybe early onset (within 6 hours) or delayed (up to 2 weeks) (cisplatin, cyclophosphamide, doxorubicin) - maybe alleviated by 5HT3 receptor antagonists (Ondansetron) with dexamethasone
 - Diarrhoea (irinotecan, 5FU, mitomycin C)
 - Mucositis (doxorubicin, 5FU, methotrexate)

Other toxicities

- Alopecia (hair loss)
 - Cyclophosphamide, doxorubicin, etoposide, vincristine, ifosfamide
- Pulmonary toxicity
 - Bleomycin, busulphan
- Cardiac toxicity
 - Doxorubicin, epirubicin
- Renal
 - - Cisplatin (decreased GFR), high-dose methotrexate
- Bladder toxicity
 - Ifosfamide, cyclophosphamide - cystitis - MESNA
- Neurological toxicity
 - Vinca, paclitaxel, ifosfamide, cyclophosphamide
- Local toxicity
 - At injection site (doxorubicin, mitomycin C, vinca alkaloids)

Tumour Response

- CR (Complete Response)
 - Complete resolution of all measurable disease for at least 1 month
- PR (Partial Response)
 - 50% reduction in the product of 2 perpendicular diameters for 1 month or more
- SD (Stable Disease)
 - No change in size of measurable tumour over a period of 1 month or more
- Pancreatic cancer
 - Erlotinib (increased 1 year survival- 24% vs 17%)
- Renal cell carcinoma
 - FDA approved sorafenib and sunitinib
- Non-small cell lung cancer
 - Erlotinib (2 month gain in survival)
 - Bevacizumab
- Breast cancer
 - Trastuzumab

Mechanisms of Anticancer Agents - Drug Resistance (Lecture 2)

Drug Resistance

- Most important reason for cancer treatment failure
 - Genetic instability of tumours allows for environmental adaption
- Heterogeneity, low growth fraction & slow doubling time of most solid tumours results in low fractional cell kill
- Hypoxia reduced drug access & tumour sensitivity to many drugs (& radiation)
- Low drug levels can select for resistance

Chemrsensitivity of cancer

- Group 1: Sensitive, cures common
 - Burkitt’s lymphoma, acute lymphoblastic leukaemia in children, choriocarcinoma, germ cell tumours, Hodgkin’s disease, Wilms tumour
- Group 2: Moderately sensitive, may prolong survival
 - Ovarian, rectal, breast cancer, colorectal cancer, small cell lung cancer, AML
- Group 3: Resistant, no definite effect on survival
 - Non small cell lung cancer, melanoma, pancreatic, renal, gliomas, metastatic colorectal cancer, soft tissue sarcoma
 - Due to cell types involved - very difficult to treat

Drug Resistance

- Mutation of target stops drug binding/working
- Gene amplification of target
 - Drug can't inhibit enough of the enzyme to cause cell death
- Increased tolerance
 - Decreased cell surveillance
 - Won't trigger apoptosis

```
Dose → Level → Damage → Death

"pharmacological"
  - Increased drug efflux (PgP, MRP)
  - Decreased drug influx (RFC)
  - Cytoplasmic drug inactivation (GSH)
  - Gene amplification of target (DHFR, TS)
  - Mutation of target (tubulin, topoisomerase II)

"post-target"
  - Increased DNA repair (AGT, NER)
  - Increase tolerance (loss of mismatch repair)
  - Failure to undergo apoptosis (loss of p53, increased BCL-2)
```