Chapter 4

Applications of Derivatives

4.1

Extreme Values of Functions

DEFINITIONS

Let f be a function with domain D. Then f has an absolute
maximum value on D at a point c if

$$f(x) \leq f(c) \quad \text{for all } x \in D$$

and an absolute minimum value on D at c if

$$f(x) \geq f(c) \quad \text{for all } x \in D.$$

FIGURE 4.1 Absolute extrema for
the sine and cosine functions on
$[-\pi/2, \pi/2]$. These values can depend
on the domain of a function.
Theorem 5—Second Derivative Test for Local Extrema: Suppose \(f' \) is continuous on an open interval that contains \(x = c \).

1. If \(f'(c) = 0 \) and \(f''(c) < 0 \), then \(f \) has a local maximum at \(x = c \).
2. If \(f'(c) = 0 \) and \(f''(c) > 0 \), then \(f \) has a local minimum at \(x = c \).
3. If \(f'(c) = 0 \) and \(f''(c) = 0 \), then the test fails. The function \(f \) may have a local maximum, a local minimum, or neither.

Interval 1

<table>
<thead>
<tr>
<th>(x < 0)</th>
<th>(0 < x < 3)</th>
<th>(3 < x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interval</td>
<td>(x < 0)</td>
<td>(0 < x < 2)</td>
</tr>
<tr>
<td>Sign of (f')</td>
<td>decreasing</td>
<td>decreasing</td>
</tr>
<tr>
<td>Behavior of (f)</td>
<td>concave up</td>
<td>concave down</td>
</tr>
</tbody>
</table>

Interval 2

<table>
<thead>
<tr>
<th>(x < 0)</th>
<th>(0 < x < 2)</th>
<th>(2 < x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sign of (f'')</td>
<td>(0 < x < 2)</td>
<td>(2 < x)</td>
</tr>
<tr>
<td>Behavior of (f)</td>
<td>concave up</td>
<td>concave down</td>
</tr>
</tbody>
</table>

Figure 4.29 The graph of \(f(x) = x^4 - 4x^3 + 10 \) (Example 7).
FIGURE 4.34 This one-liter can uses the least material when \(h = 2r \) (Example 2).

FIGURE 4.35 The graph of \(A = 2\pi r^2 + \frac{2000}{r} \) is concave up.

FIGURE 4.36 The rectangle inscribed in the semicircle in Example 3.

FIGURE 4.37 A light ray refracted (deflected from its path) as it passes from one medium to a denser medium (Example 4).