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1.2 Matrices and Elementary Row Operations 9

31. To avoid the introduction of fractions we interchange rows one and three. The remaining operations are
used to change all pivots to ones and eliminate nonzero entries above and below them.

⎡

⎣
3 3 1
3 −1 0

−1 −1 2

⎤

⎦R1 ↔ R3−−−−−−→

⎡

⎣
−1 −1 2

3 −1 1
3 3 1

⎤

⎦ 3R1 + R2 → R2−−−−−−−−−−−→

⎡

⎣
−1 −1 2

0 −4 6
3 3 1

⎤

⎦ 3R1 + R3 → R3−−−−−−−−−−−→

⎡

⎣
−1 −1 2

0 −4 6
0 0 7

⎤

⎦ 1

7
R3 → R3

−−−−−−−→

⎡

⎣
−1 −1 2

0 −4 6
0 0 1

⎤

⎦ (−6)R3 + R2 → R2−−−−−−−−−−−−−−→

⎡

⎣
−1 −1 2

0 −4 0
0 0 1

⎤

⎦−2R3 + R1 → R1−−−−−−−−−−−−−→
⎡

⎣
−1 −1 0

0 −4 0
0 0 1

⎤

⎦−
1

4
R2 → R2

−−−−−−−−−→

⎡

⎣
1 −1 0
0 1 0
0 0 1

⎤

⎦R2 + R1 → R1−−−−−−−−−−→

⎡

⎣
−1 0 0
0 1 0
0 0 1

⎤

⎦ (−1)R1 → R1−−−−−−−−−−→

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ .

32. The matrix

⎡

⎣
0 2 1
1 −3 −3
1 2 −3

⎤

⎦ reduces to−−−−−−−→

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ .

33. The matrix in reduced row echelon form is[
1 0 −1
0 1 0

]
.

34. The matrix in reduced row echelon form is[
1 0 3

8
0 1 − 1

4

]
.

35. The matrix in reduced row echelon form is⎡

⎣
1 0 0 −2
0 1 0 −1
0 0 1 0

⎤

⎦ .

36. The matrix in reduced row echelon form is⎡

⎣
1 0 0 2
0 1 0 6

5
0 0 1 8

5

⎤

⎦ .

37. The augmented matrix for the linear system and the reduced row echelon form are

[
1 1 1
4 3 2

]
−→

[
1 0 −1
0 1 2

]
.

The unique solution to the linear system is x = −1, y = 2.
38. The augmented matrix for the linear system

[
−3 1 1
4 2 0

]
reduces to−−−−−−−→

[
1 0 − 1

5
0 1 2

5

]
.

The unique solution to the linear system is x = − 1
5 , y = 2

5 .
39. The augmented matrix for the linear system and the reduced row echelon form are

⎡

⎣
3 −3 0 3
4 −1 −3 3
−2 −2 0 −2

⎤

⎦ −→

⎡

⎣
1 0 0 1
0 1 0 0
0 0 1 1

3

⎤

⎦ .

The unique solution for the linear system is x = 1, y = 0, z = 1
3 .

40. The augmented matrix

⎡

⎣
2 0 −4 1
4 3 −2 0
2 0 2 2

⎤

⎦ reduces to−−−−−−−→

⎡

⎣
1 0 0 5

6
0 1 0 −1
0 0 1 1

6

⎤

⎦ .

The unique solution for the linear system is x = 5
6 , y = −1, z = 1

6 .
41. The augmented matrix for the linear system and the reduced row echelon form are

⎡

⎣
1 2 1 1
2 3 2 0
1 1 1 2

⎤

⎦ −→

⎡

⎣
1 0 1 0
0 1 0 0
0 0 0 1

⎤

⎦ .
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14 Chapter 1 Systems of Linear Equations and Matrices

will equal

[
−5 6
12 16

]
if and only b + 2 = 6, 3a = 12, and ab = 16. That is, a = b = 4.

32. Let A =

[
a b
c d

]
and B =

[
e f
g h

]
. Since

AB − BA =

[
bg − cf (af + bh − (be + fd)

(ce + dg) − (ag + ch) cf − bg

]
,

then the sum of the terms on the diagonal is (bg − cf) + (cf − bg) = 0.

33. Several powers of the matrix A are given by

A2 =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ , A3 =

⎡

⎣
1 0 0
0 −1 0
0 0 1

⎤

⎦ , A4 =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ , and A5 =

⎡

⎣
1 0 0
0 −1 0
0 0 1

⎤

⎦ .

We can see that if n is even, then An is the identity matrix, so in particular A20 =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ . Notice also

that, if n is odd, then An =

⎡

⎣
1 0 0
0 −1 0
0 0 1

⎤

⎦ .

34. Since (A + B)(A − B) = A2 − AB + BA − B2, then (A + B)(A − B) = A2 − B2 when AB = BA.

35. We can first rewrite the expression A2B as A2B = AAB. Since AB = BA, then A2B = AAB = ABA =
BAA = BA2.

36. a. Since AB = BA and AC = CA, then (BC)A = B(CA) = B(AC) = A(BC) and hence BC and A

commute. b. Let A =

[
1 0
0 1

]
, so that A commutes with every 2×2 matrix. Then select any two matrices

that do not commute. For example, let B =

[
1 0
1 0

]
and C =

[
0 1
0 1

]
.

37. Multiplication of A times the vector x =

⎡

⎢⎢⎢
⎣

1
0
...
0

⎤

⎥⎥⎥
⎦

gives the first column vector of the matrix A. Then

Ax = 0 forces the first column vector of A to be the zero vector. Then let x =

⎡

⎢⎢⎢
⎣

0
1
...
0

⎤

⎥⎥⎥
⎦

and so on, to show

that each column vector of A is the zero vector. Hence, A is the zero matrix.

38. Let An =

[
1 − n −n

n 1 + n

]
and Am =

[
1 − m −m

m 1 + m

]
. Then

AnAm =

[
(1 − n)(1 − m) − nm (1 − n)(−m) − (1 + m)n
n(1 − m) + m(1 + n) −mn + (1 + n)(1 + m)

]
=

[
1 − (m + n) −(m + n)

m + n 1 + (m + n)

]
= Am+n.

39. Let A =

[
a b
c d

]
, so that At =

[
a c
b d

]
. Then

AAt =

[
a b
c d

] [
a c
b d

]
=

[
a2 + b2 ac + bd
ac + bd c2 + d2

]
=

[
0 0
0 0

]

if and only if a2+b2 = 0, c2+d2 = 0, and ac+bd = 0. The only solution to these equations is a = b = c = d = 0,
so the only matrix that satisfies AAt = 0 is the 2 × 2 zero matrix.
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1.4 The Inverse of a Matrix 17

7. Since the matrix A is row equivalent to the

matrix

⎡

⎣
1 −1 0
0 0 1
0 0 0

⎤

⎦ , the matrix A can not be

reduced to the identity and hence is not invertible.

8. Since the matrix A is not row equivalent to
the identity matrix, then A is not invertible.

9. A−1 =

⎡

⎢⎢
⎣

1/3 −1 −2 1/2
0 1 2 −1
0 0 −1 1/2
0 0 0 −1/2

⎤

⎥⎥
⎦ 10. A−1 =

⎡

⎢⎢
⎣

1 −3 3 0
0 1 −1 1/2
0 0 1/2 1/2
0 0 0 1/2

⎤

⎥⎥
⎦

11. A−1 = 1
3

⎡

⎢⎢
⎣

3 0 0 0
−6 3 0 0
1 −2 −1 0
1 1 1 1

⎤

⎥⎥
⎦ 12.

A−1 =

⎡

⎢⎢
⎣

1 0 0 0
2 1 0 0

−1/2 −1/2 −1/2 0
1 1 0 1/2

⎤

⎥⎥
⎦

13. The matrix A is not invertible. 14. The matrix A is not invertible.

15. A−1 =

⎡

⎢⎢
⎣

0 0 −1 0
1 −1 −2 1
1 −2 −1 1
0 −1 −1 1

⎤

⎥⎥
⎦ 16. The matrix A is not invertible.

17. Performing the operations, we have that AB+A =

[
3 8

10 −10

]
= A(B+I) and AB+B =

[
2 9
6 −3

]
=

(A + I)B.

18. Since the distributive property holds for matrix multiplication and addition, we have that (A+I)(A+I) =
A2 + A + A + I = A2 + 2A + I.

19. Let A =

[
1 2

−2 1

]
. a. Since A2 =

[
−3 4
−4 −3

]
and −2A =

[
−2 −4

4 −2

]
, then A2 − 2A + 5I = 0. b.

Since (1)(1) − (2)(−2) = 5, the inverse exists and A−1 = 1
5

[
1 −2
2 1

]
= 1

5 (2I − A).

c. If A2−2A+5I = 0, then A2−2A = −5I, so that A
(

1
5 (2I − A)

)
= 2

5A− 1
5A2 = − 1

5 (A2−2A) = − 1
5 (−5I) = I.

Hence A−1 = 1
5 (2I − A).

20. Applying the operations (−3)R1 + R2 → R2 and (−1)R1 + R3 → R3 gives⎡

⎣
1 λ 0
3 2 0
1 2 1

⎤

⎦ reduces to−−−−−−−→

⎡

⎣
1 λ 0
0 2 − 3λ 0
1 2 1

⎤

⎦ . So if λ = 2
3 , then the matrix can not be reduced to the identity

and hence, will not be invertible.

21. The matrix is row equivalent to

⎡

⎣
1 λ 0
0 3 − λ 1
0 1 − 2λ 1

⎤

⎦ . If λ = −2, then the second and third rows are

identical, so the matrix can not be row reduced to the identity and hence, is not invertible.

22. Since the matrix is row equivalent to

⎡

⎣
1 2 1
0 λ − 4 −1
0 4 − 2λ 0

⎤

⎦ , if λ = 2, then the matrix can not be row

reduced to the identity matrix and hence, is not invertible.

23. a. If λ ̸= 1, then the matrix A is invertible.

b. When λ ̸= 1 the inverse matrix is A−1 =

⎡

⎣
− 1

λ−1
λ

λ−1 − λ
λ−1

1
λ−1 − 1

λ−1
1

λ−1
0 0 1

⎤

⎦ .
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32 Chapter 1 Systems of Linear Equations and Matrices

27. Using the LU factorization A = LU =

⎡

⎣
1 0 0
1 1 0
1 1 1

⎤

⎦

⎡

⎣
2 1 −1
0 1 −1
0 0 3

⎤

⎦ , we have that

A−1 = U−1L−1 =

⎡

⎣
1
2 − 1

2 0
0 1 1

3
0 0 1

3

⎤

⎦

⎡

⎣
1 0 0
−1 1 0
0 −1 1

⎤

⎦ =

⎡

⎣
1 − 1

2 0
−1 2

3
1
3

0 − 1
3

1
3

⎤

⎦ .

28.

A−1 = (LU)−1 =

⎛

⎝

⎡

⎣
1 0 0
−1 1 0
1 −1 1

⎤

⎦

⎡

⎣
−3 2 1
0 1 2
0 0 1

⎤

⎦

⎞

⎠

−1

=

⎡

⎣
− 1

3
2
3 −1

0 1 −2
0 0 1

⎤

⎦

⎡

⎣
1 0 0
1 1 0
0 1 1

⎤

⎦

=

⎡

⎣
1
3 − 1

3 −1
1 −1 −2
0 1 1

⎤

⎦

29. Suppose [
a 0
b c

] [
d e
0 f

]
=

[
0 1
1 0

]
.

This gives the system of equations ad = 0, ae = 1, bd = 1, be + cf = 0. The first two equations are satisfied
only when a ̸= 0 and d = 0. But this incompatible with the third equation.

30. Since A is row equivalent to B there are elementary matrices such that B = Em . . . E1A and since B
is row equivalent to C there are elementary matrices such that C = Dn . . . D1B. Then C = Dn . . . D1B =
Dn . . . D1Em . . . E1A and hence, A is row equivalent to C.

31. If A is invertible, there are elementary matrices E1, . . . , Ek such that I = Ek · · ·E1A. Similarly, there
are elementary matrices D1, . . . , Dℓ such that I = Dℓ · · ·D1B. Then A = E−1

k · · ·E−1
1 Dℓ · · ·D1B, so A is row

equivalent to B.

32. a. Since L is invertible, the diagonal entries are all nonzero. b. The determinant of A is the product
of the diagonal entries of L and U, that is det(A) = ℓ11 · · · ℓnnu11 · · ·unn. c. Since L is lower triangular
and invertible it is row equivalent to the identity matrix and can be reduced to I using only replacement
operations.

Exercise Set 1.8

1. We need to find positive whole numbers x1, x2, x3, and x4 such that x1Al3 + x2CuO −→ x3Al2O3 + x4Cu
is balanced. That is, we need to solve the linear system

⎧
⎪⎨

⎪⎩

3x1 = 2x3

x2 = 3x3

x2 = x4

, which has infinitely many solutions given by x1 =
2

9
x2, x3 =

1

3
x2, x4 = x2, x2 ∈ R.

A particular solution that balances the equation is given by x1 = 2, x2 = 9, x3 = 3, x4 = 9.
2. To balance the equation x1I2 + x2Na2S2O3 −→ x3NaI + x4Na2S4O6, we solve the linear system⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2x1 = x3

2x2 = x3 + 2x4

2x2 = 4x4

3x2 = 6x4

, so that x1 = x4, x2 = 2x4, x3 = 2x4, x4 ∈ R. For a particular solution that balances

the equation, let x4 = 1, so x1 = 1, x2 = 2, and x3 = 2.
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Chapter Test Chapter 2 59

16. T 17. T 18. F. Since the column vec-
tors are linearly independent,
det(A) ̸= 0

19. T 20. T 21. F. If the vector v3 is a lin-
ear combination of v1 and v2,
then the vectors will be linearly
dependent.

22. F. At least one is a linear
combination of the others.

23. F. The determinant of the
matrix will be zero since the col-
umn vectors are linearly depen-
dent.

24. F. The third vector is a
combination of the other two and
hence, the three together are lin-
early dependent.

25. T 26. F. An n × n matrix is in-
vertible if and only if the column
vectors are linearly independent.

27. T

28. F. For example, the column
vectors of any 3 × 4 matrix are
linearly dependent.

29. T 30. F. The vector can be a linear
combination of the linearly inde-
pendent vectors v1,v2 and v3.

31. T 32. F. The set of coordi-
nate vectors {e1, e2, e3} is lin-
early independent, but the set
{e1, e2, e3, e1 + e2 + e3} is lin-
early dependent.

33. T
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66 Chapter 3 Vector Spaces

• Two linearly dependent vectors can not span R2. Let S = span

{[
2
1

]
,

[
−4
−2

]}
. If v in in S, then

there are scalars c1 and c2 such that

v = c1

[
2
1

]
+ c2

[
−4
−2

]
= c1

[
2
1

]
+ c2

(
−2

[
2
1

])
= (c1 − 2c2)

[
2
1

]

and hence, every vector in the span of S is a linear combination of only one vector.

• A linearly dependent set of vectors can span a vector space. For example, let S =

{[
1
0

]
,

[
0
1

]
,

[
2
3

]}
.

Since the coordinate vectors are in S, then span(S) = R2, but the vectors are linearly dependent since[
2
3

]
= 2

[
1
0

]
+ 3

[
0
1

]
.

In general, to determine whether or not a vector v =

⎡

⎢⎢⎢
⎣

v1

v2
...

vn

⎤

⎥⎥⎥
⎦

is in span{u1, . . . ,uk}, start with the vector

equation
c1u1 + c2u2 + · · · + ckuk = v,

and then solve the resulting linear system. These ideas apply to all vector spaces not just the Euclidean
spaces. For example, if S = {A ∈ M2×2|A is invertible} , then S is not a subspace of the vector space of

all 2 × 2 matrices. For example, the matrices

[
1 0
0 −1

]
and

[
1 0
0 1

]
are both invertible, so are in S, but

[
1 0
0 −1

]
+

[
1 0
0 1

]
=

[
2 0
0 0

]
, which is not invertible. To determine whether of not

[
3 −1
1 1

]
is in

the span of the two matrices

[
1 2
0 1

]
and

[
−1 0

1 1

]
, start with the equation

c1

[
1 2
0 1

]
+ c2

[
−1 0

1 1

]
=

[
2 −1
1 1

]
⇔

[
c1 − c2 2c1

c2 c1 + c2

]
=

[
2 −1
1 1

]
.

The resulting linear system is c1 − c2 = 2, 2c1 = −1, c2 = 1, c1 + c2 = 1, is inconsistent and hence, the matrix
is not in the span of the other two matrices.

Solutions to Exercises

1. Let

[
0
y1

]
and

[
0
y2

]
be two vectors in S and c a scalar. Then

[
0
y1

]
+ c

[
0
y2

]
=

[
0

y1 + cy2

]
is in

S, so S is a subspace of R2.

2. The set S is not a subspace of R2. If u =

[
−1
−2

]
,v =

[
3
1

]
, then u + v =

[
2
−1

]
/∈ S.

3. The set S is not a subspace of R2. If u =

[
2
−1

]
,v =

[
−1
3

]
, then u + v =

[
1
2

]
/∈ S.

4. The set S is not a subspace of R2. If u =

[
1
0

]
,v =

[
1/2
0

]
, then u + v =

[
3/2
0

]
/∈ S since

(3/2)2 + 02 = 9/4 > 1.

5. The set S is not a subspace of R2. If u =

[
0
−1

]
and c = 0, then cv =

[
0
0

]
/∈ S.

6. The set S is a subspace since

[
x
3x

]
+ c

[
y
3y

]
=

[
x + cy

3(x + cy)

]
∈ S.

Preview from Notesale.co.uk

Page 69 of 185
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B =

⎧
⎨

⎩

⎡

⎣
2
−3
0

⎤

⎦ ,

⎡

⎣
0
2
2

⎤

⎦ ,

⎡

⎣
4
0
4

⎤

⎦

⎫
⎬

⎭
. Observe that span(S) = R3.

30. The vectors can not be a basis since a set of four vectors in R3 is linearly dependent. To trim the set
down to a basis for the span row reduce the matrix with column vectors the vectors in S. This gives

⎡

⎣
2 1 0 2
2 −1 2 3
0 0 2 1

⎤

⎦ reduces to−−−−−−−→

⎡

⎣
2 1 0 2
0 −2 2 1
0 0 2 1

⎤

⎦ .

A basis for the span consists of the column vectors in the original matrix corresponding to the pivot columns
of the row echelon matrix. So a basis for the span of S is given by

B =

⎧
⎨

⎩

⎡

⎣
2
2
0

⎤

⎦ ,

⎡

⎣
1
−1
0

⎤

⎦ ,

⎡

⎣
0
2
2

⎤

⎦

⎫
⎬

⎭
. Observe that span(S) = R3.

31. Form the 3 × 5 matrix with first two column vectors the vectors in S and then augment the identity
matrix. Reducing this matrix, we have that

⎡

⎣
2 1 1 0 0
−1 0 0 1 0
3 2 0 0 1

⎤

⎦ reduces to−−−−−−−→

⎡

⎣
2 1 1 0 0
0 1 1 2 0
0 0 −2 −1 1

⎤

⎦ .

A basis for R3 consists of the column vectors in the original matrix corresponding to the pivot columns of the

row echelon matrix. So a basis for R3 containing S is B =

⎧
⎨

⎩

⎡

⎣
2
−1
3

⎤

⎦ ,

⎡

⎣
1
0
2

⎤

⎦ ,

⎡

⎣
1
0
0

⎤

⎦

⎫
⎬

⎭
.

32. Form the 3 × 5 matrix with first two column vectors the vectors in S and then augment the identity
matrix. Reducing this matrix, we have that

⎡

⎣
−1 1 1 0 0
1 1 0 1 0
3 1 0 0 1

⎤

⎦ reduces to−−−−−−−→

⎡

⎣
−1 1 1 0 0
0 2 1 1 0
0 0 1 −2 1

⎤

⎦ .

A basis for R3 consists of the column vectors in the original matrix corresponding to the pivot columns of the

row echelon matrix. So a basis for R3 containing S is B =

⎧
⎨

⎩

⎡

⎣
−1
1
3

⎤

⎦ ,

⎡

⎣
1
1
1

⎤

⎦ ,

⎡

⎣
1
0
0

⎤

⎦

⎫
⎬

⎭
.

33. A basis for R4 containing S is

B =

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢
⎣

1
−1
2
4

⎤

⎥⎥
⎦ ,

⎡

⎢⎢
⎣

3
1
1
2

⎤

⎥⎥
⎦ ,

⎡

⎢⎢
⎣

1
0
0
0

⎤

⎥⎥
⎦ ,

⎡

⎢⎢
⎣

0
0
1
0

⎤

⎥⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭
.

34. A basis for R4 containing S is

B =

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢
⎣

−1
1
1
−1

⎤

⎥⎥
⎦ ,

⎡

⎢⎢
⎣

1
−3
−1
2

⎤

⎥⎥
⎦ ,

⎡

⎢⎢
⎣

1
−2
−1
3

⎤

⎥⎥
⎦ ,

⎡

⎢⎢
⎣

1
0
0
0

⎤

⎥⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭
.

35. A basis for R3 containing S is

B =

⎧
⎨

⎩

⎡

⎣
−1
1
3

⎤

⎦ ,

⎡

⎣
1
1
1

⎤

⎦ ,

⎡

⎣
1
0
0

⎤

⎦

⎫
⎬

⎭
.

36. A basis for R3 containing S is

B =

⎧
⎨

⎩

⎡

⎣
2
2
−1

⎤

⎦ ,

⎡

⎣
−1
−1
3

⎤

⎦ ,

⎡

⎣
1
0
0

⎤

⎦

⎫
⎬

⎭
.

37. Let eii denote the n × n matrix with a 1 in the row i, column i component and 0 in all other locations.
Then B = {eii | 1 ≤ i ≤ n} is a basis for the subspace of all n × n diagonal matrices.
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80 Chapter 3 Vector Spaces

19. Since the equation c1

⎡

⎣
−1
1
1

⎤

⎦ + c2

⎡

⎣
1
0
1

⎤

⎦ + c3

⎡

⎣
−1
1
0

⎤

⎦ =

⎡

⎣
a
b
c

⎤

⎦ gives

⎡

⎣
−1 1 −1 a
1 0 1 b
1 1 0 c

⎤

⎦ −→

⎡

⎣
1 0 0 −a − b + c
0 1 0 a + b
0 0 1 a + 2b − c

⎤

⎦ , we have that

⎡

⎣
a
b
c

⎤

⎦

B

=

⎡

⎣
−a − b + c

a + b
a + 2b − c

⎤

⎦ .

20. Since
⎡

⎢⎢
⎣

1 0 0 −1 a
0 −1 −1 0 b
1 1 −1 0 c
0 −1 0 −1 d

⎤

⎥⎥
⎦ reduces to−−−−−−−→

⎡

⎢⎢
⎣

1 0 0 0 2a + b − c − 2d
0 1 0 0 −a − b + c + d
0 0 1 0 a − c − d
0 0 0 1 a + b − c − 2d

⎤

⎥⎥
⎦ , then

⎡

⎢⎢
⎣

⎡

⎢⎢
⎣

a
b
c
d

⎤

⎥⎥
⎦

⎤

⎥⎥
⎦

B

=

⎡

⎢⎢
⎣

2a + b − c − 2d
−a− b + c + d

a − c − d
a + b − c − 2d

⎤

⎥⎥
⎦ .

21. a. [I]B2

B1
=

⎡

⎣
0 1 0
1 0 0
0 0 1

⎤

⎦ b. [v]B2
= [I]B2

B1

⎡

⎣
1
2
3

⎤

⎦ =

⎡

⎣
2
1
3

⎤

⎦

22. a. [I]B2

B1
=

[
1 −1
1 0

]
b. [I]B1

B2
=

[
0 1

−1 1

]
c. Since

[
1 −1
1 0

] [
0 1

−1 0

]
=

[
1 0
0 1

]
, then ([I]B2

B1
)−1 = [I]B1

B2
.

23. a. [I]BS =

[
1 1
0 2

]
b.

[
1
2

]

B

=

[
3
4

]
;

[
1
4

]

B

=

[
5
8

]
;

[
4
2

]

B

=

[
6
4

]
;

[
4
4

]

B

=

[
8
8

]

c. d.

24. a. [v]B =

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
=

[
x cos θ − y sin θ
x sin θ + y cos θ

]
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4.1 Linear Transformations 89

• If A is an m × n matrix, then T (v) = Av is a linear transformation from Rn to Rm.

• T (c1v1 + c2v2 + · · · + cnvn) = c1T (v1) + c2T (v2) + · · · + cnT (vn)

The third property can be used to find the image of a vector when the action of a linear transformation is
known only on a specific set of vectors, for example on the vectors of a basis. For example, suppose that
T : R3 −→ R3 is a linear transformation and

T

⎛

⎝

⎡

⎣
1
1
1

⎤

⎦

⎞

⎠ =

⎡

⎣
−1
2
0

⎤

⎦ , T

⎛

⎝

⎡

⎣
1
0
1

⎤

⎦

⎞

⎠ =

⎡

⎣
1
1
1

⎤

⎦ , and T

⎛

⎝

⎡

⎣
0
1
1

⎤

⎦

⎞

⎠ =

⎡

⎣
2
3
−1

⎤

⎦ .

Then the image of an arbitrary input vector can be found since

⎧
⎨

⎩

⎡

⎣
1
1
1

⎤

⎦ ,

⎡

⎣
1
0
1

⎤

⎦ ,

⎡

⎣
0
1
1

⎤

⎦

⎫
⎬

⎭
is a basis for R3.

For example, let’s find the image of the vector

⎡

⎣
1
−2
0

⎤

⎦ . The first step is to write the input vector in terms

of the basis vectors, so ⎡

⎣
1
−2
0

⎤

⎦ = −

⎡

⎣
1
1
1

⎤

⎦ + 2

⎡

⎣
1
0
1

⎤

⎦ −

⎡

⎣
0
1
1

⎤

⎦ .

Then use the linearity properties of T to obtain

T

⎛

⎝

⎡

⎣
1
−2
0

⎤

⎦

⎞

⎠ = T

⎛

⎝−

⎡

⎣
1
1
1

⎤

⎦ + 2

⎡

⎣
1
0
1

⎤

⎦ −

⎡

⎣
0
1
1

⎤

⎦

⎞

⎠ = −T

⎛

⎝

⎡

⎣
1
1
1

⎤

⎦

⎞

⎠ + 2T

⎛

⎝

⎡

⎣
1
0
1

⎤

⎦

⎞

⎠ − T

⎛

⎝

⎡

⎣
0
1
1

⎤

⎦

⎞

⎠

= −

⎡

⎣
−1
2
0

⎤

⎦ + 2

⎡

⎣
1
1
1

⎤

⎦ −

⎡

⎣
2
3
−1

⎤

⎦ =

⎡

⎣
1
−3
3

⎤

⎦ .

Solutions to Exercises

1. Let u =

[
u1

u2

]
and v =

[
v1

v2

]
be vectors in R2 and c a scalar. Since

T (u + cv) = T

([
u1 + cv1

u2 + cv2

])
=

[
u2 + cv2

u1 + cv1

]
=

[
u2

u1

]
+ c

[
v2

v1

]
= T (u) + cT (v),

then T is a linear transformation.

2. Let u =

[
u1

u2

]
and v =

[
v1

v2

]
be vectors in R2 and c a scalar. Then

T (u + cv) = T

([
u1 + cv1

u2 + cv2

])
=

[
(u1 + cv1) + (u2 + cv2)

(u1 + cv1) − (u2 + cv2) + 2

]

and

T (u) + cT (v) =

[
(u1 + cv1) + (u2 + cv2)

(u1 + cv1) − (u2 + cv2) + 4

]
.

For example, if u =

[
1
0

]
,v =

[
0
1

]
, and c = 1, then T (u + v) =

[
2
2

]
and T (u) + T (v) =

[
2
4

]
. Hence,

T is not a linear transformation.
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94 Chapter 4 Linear Transformations

is a linear transformation. The null space of T, denoted by N(T ), is the null space of the matrix, N(A) =
{x ∈ R3 | Ax = 0}. Since

T

⎛

⎝

⎡

⎣
x1

x2

x3

⎤

⎦

⎞

⎠ =

⎡

⎣
1 3 0
2 0 3
2 0 3

⎤

⎦

⎡

⎣
x1

x2

x3

⎤

⎦ = x1

⎡

⎣
1
2
2

⎤

⎦ + x2

⎡

⎣
3
0
0

⎤

⎦ + x3

⎡

⎣
0
3
3

⎤

⎦ ,

the range of T, denoted by R(T ) is the column space of A, col(A). Since
⎡

⎣
1 3 0
2 0 3
2 0 3

⎤

⎦ reduces to−−−−−−−→

⎡

⎣
1 3 0
0 −6 3
0 0 0

⎤

⎦

the homogeneous equation Ax = 0 has infinitely many solutions given by x1 = − 3
2x3, x2 = 1

2x3, and x3

a free variable. So the null space is

⎧
⎨

⎩
t

⎡

⎣
−3/2
1/2
1

⎤

⎦

∣∣∣∣∣∣
t ∈ R

⎫
⎬

⎭
, which is a line that passes through the origin

in three space. Also since the pivots in the reduced matrix are in columns one and two, a basis for the

range is

⎧
⎨

⎩

⎡

⎣
1
2
2

⎤

⎦ ,

⎡

⎣
3
0
0

⎤

⎦

⎫
⎬

⎭
and hence, the range is a plane in three space. Notice that in this example,

3 = dim(R3) = dim(R(T )) + dim(N(T )). This is a fundamental theorem that if T : V −→ W is a linear
transformation defined on finite dimensional vector spaces, then

dim(V ) = dim(R(T )) + dim(N(T )).

If the mapping is given as a matrix product T (v) = Av such that A is a m × n matrix, then this result is
written as

n = rank(A) + nullity(A).

A number of useful statements are added to the list of equivalences concerning n × n linear systems:

A is invertible ⇔ Ax = b has a unique solution for every b ⇔ Ax = 0 has only the trivial solution

⇔ A is row equivalent to I ⇔ det(A) ̸= 0 ⇔ the column vectors of A are linearly independent

⇔ the column vectors of A span Rn ⇔ the column vectors of A are a basis for Rn

⇔ rank(A) = n ⇔ R(A) = col(A) = Rn ⇔ N(A) = {0} ⇔ row(A) = Rn

⇔ the number of pivot columns in the row echelon form of A is n.

Solutions to Exercises

1. Since T (v) =

[
0
0

]
, v is in N(T ). 2. Since T (v) =

[
0
0

]
, v is in N(T ).

3. Since T (v) =

[
−5
10

]
, v is not in N(T ). 4. Since T (v) =

[
0
0

]
, v is in N(T ).

5. Since p′(x) = 2x − 3 and p′′(x) = 2, then
T (p(x)) = 2x, so p(x) is not in N(T ).

6. Since p′(x) = 5 and p′′(x) = 0, then T (p(x)) =
0, so p(x) is in N(T ).

7. Since T (p(x)) = −2x, then p(x) is not in
N(T ).

8. Since T (p(x)) = 0, then p(x) is in N(T ).

9. Since

⎡

⎣
1 0 2 1
2 1 3 3
1 −1 3 0

⎤

⎦ reduces to−−−−−−−→

⎡

⎣
1 0 2 1
0 1 −1 1
0 0 0 0

⎤

⎦ there are infinitely many vectors that are mapped

to

⎡

⎣
1
3
0

⎤

⎦ . For example, T

⎛

⎝

⎡

⎣
−1
2
1

⎤

⎦

⎞

⎠ =

⎡

⎣
1
3
0

⎤

⎦ and hence,

⎡

⎣
1
3
0

⎤

⎦ is in R(T ).
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10. Since

⎡

⎣
1 0 2 2
2 1 3 3
1 −1 3 4

⎤

⎦ reduces to−−−−−−−→

⎡

⎣
1 0 2 0
0 1 −1
0 0 0 1

⎤

⎦ the linear system is inconsistent, so the vector

⎡

⎣
2
3
4

⎤

⎦ is not in R(T ).

11. Since

⎡

⎣
1 0 2 −1
2 1 3 1
1 −1 3 −2

⎤

⎦ reduces to−−−−−−−→

⎡

⎣
1 0 2 0
0 1 −1 0
0 0 0 1

⎤

⎦ , the linear system is inconsistent, so the vector

⎡

⎣
−1
1
−2

⎤

⎦ is not in R(T ).

12. Since

⎡

⎣
1 0 2 −2
2 1 3 −5
1 −1 3 −1

⎤

⎦ reduces to−−−−−−−→

⎡

⎣
1 0 2 −2
0 1 −1 −1
0 0 0 0

⎤

⎦ there are infinitely many vectors that are

mapped to

⎡

⎣
−2
−5
1

⎤

⎦ and hence, the vector

⎡

⎣
−2
−5
−1

⎤

⎦ is in R(T ).

13. The matrix A is in R(T ). 14. The matrix A is not in R(T ).

15. The matrix A is not in R(T ). 16. The matrix A is in R(T ).

17. A vector v =

[
x
y

]
is in the null space, if and only if 3x + y = 0 and y = 0. That is, N(T ) =

{[
0
0

]}
.

Hence, the null space has dimension 0, so does not have a basis.

18. A vector is in the null space if and only if

{
−x + y = 0

x − y = 0
, that is x = y. Therefore, N(T ) =

{[
a
a

]∣∣∣∣ a ∈ R
}

and hence, a basis is

{[
1
1

]}
.

19. Since

⎡

⎣
x + 2z

2x + y + 3z
x − y + 3z

⎤

⎦ =

⎡

⎣
0
0
0

⎤

⎦ if and only if x = −2z and y = z every vector in the null space has the

form

⎡

⎣
−2z
z
z

⎤

⎦ . Hence, a basis for the null space is

⎧
⎨

⎩

⎡

⎣
−2
1
1

⎤

⎦

⎫
⎬

⎭
.

20. Since

⎡

⎣
−2 2 2
3 5 1
0 2 1

⎤

⎦ reduces to−−−−−−−→

⎡

⎣
1 0 −1/2
0 1 1/2
0 0 0

⎤

⎦ , then N(T ) =

⎧
⎨

⎩
t

⎡

⎣
1/2
−1/2

1

⎤

⎦

∣∣∣∣∣∣
t ∈ R

⎫
⎬

⎭
and a basis for

the null space is

⎧
⎨

⎩

⎡

⎣
1/2
−1/2

1

⎤

⎦

⎫
⎬

⎭
.

21. Since N(T ) =

⎧
⎨

⎩

⎡

⎣
2s + t

s
t

⎤

⎦

∣∣∣∣∣∣
s, t ∈ R

⎫
⎬

⎭
, a

basis for the null space is

⎧
⎨

⎩

⎡

⎣
2
1
0

⎤

⎦ ,

⎡

⎣
1
0
1

⎤

⎦

⎫
⎬

⎭
.

22. A basis for the null space is

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢
⎣

−5
6
1
0

⎤

⎥⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭
.
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Exercise Set 4.3

An isomorphism between vector spaces establishes a one-to-one correspondence between the vector spaces.
If T : V −→ W is a one-to-one and onto linear transformation, then T is called an isomorphism. A mapping
is one-to-one if and only if N(T ) = {0} and is onto if and only if R(T ) = W. If {v1, . . . ,vn} is a basis for
V and T : V −→ W is a linear transformation, then R(T ) = span{T (v1), . . . , T (vn)}. If in addition, T is
one-to-one, then {T (v1), . . . , T (vn)} is a basis for R(T ). The main results of Section 4.3 are:

• If V is a vector space with dim(V ) = n, then V is isomorphic to Rn.

• If V and W are vector spaces of dimension n, then V and W are isomorphic.

For example, there is a correspondence between the very different vector spaces P3 and M2×2. To define the
isomorphism, start with the standard basis S = {1, x, x2, x3} for P3. Since every polynomial a+bx+cx2+dx3 =
a(1) + b(x) + c(x2) + d(x3) use the coordinate map

a + bx + cx2 + dx3 L1−→ [a + bx + cx2 + dx3]S =

⎡

⎢⎢
⎣

a
b
c
d

⎤

⎥⎥
⎦ followed by

⎡

⎢⎢
⎣

a
b
c
d

⎤

⎥⎥
⎦

L2−→
[

a b
c d

]
,

so that the composition L2(L1(a + bx + cx2 + dx3)) =

[
a b
c d

]
defines an isomorphism between P3 and

M2×2.

Solutions to Exercises

1. Since N(T ) =

{[
0
0

]}
, then T is one-to-one. 2. Since N(T ) =

{[
−a
a

]∣∣∣∣ a ∈ R
}

, then T is

not one-to-one.

3. Since N(T ) =

⎧
⎨

⎩

⎡

⎣
0
0
0

⎤

⎦

⎫
⎬

⎭
, then T is one-to-

one.

4. Since

⎡

⎣
2 −2 −2
−2 −1 −1
−2 −4 −1

⎤

⎦ reduces to−−−−−−−→

⎡

⎣
2 −2 −2
0 −3 −3
0 0 3

⎤

⎦ ,

then N(T ) =

⎧
⎨

⎩

⎡

⎣
0
0
0

⎤

⎦

⎫
⎬

⎭
, so T is one-to-one.

5. Let p(x) = ax2 + bx + c, so that p′(x) = 2ax + b. Then

T (p(x)) = 2ax + b − ax2 − bx − c = −ax2 + (2a − b)x + (b − c) = 0

if and only if a = 0, 2a − b = 0, b − c = 0. That is, p(x) is in N(T ) if and only if p(x) = 0. Hence, T is
one-to-one.

6. Let p(x) = ax2 + bx + c, so T (p(x)) = ax3 + bx2 + cx = 0 if and only if a = b = c = 0. Therefore, N(T )
consists of only the zero polynomial and hence, T is one-to-one.

7. A vector

[
a
b

]
is in the range of T if the linear system

{
3x − y = a

x + y = b
has a solution. Since the linear system

is consistent for every vector

[
a
b

]
, T is onto R2. Notice the result also follows from det

([
3 −1
1 1

])
= 4,

so the inverse exists.

8. Since

[
−2 1 a
1 −1/2 b

]
reduces to−−−−−−−→

[
−2 1 a
0 0 1

2a + b

]
, then a vector

[
a
b

]
is in the range of T if and

only if a = −2b and hence, T is not onto.
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4.3 Isomorphisms 99

9. Since

⎡

⎣
1 −1 2
0 1 −1
0 0 2

⎤

⎦ is row equivalent to

the identity matrix, then the linear operator T is
onto R3.

10. Since
⎡

⎣
2 3 −1 a
−1 1 3 b
1 4 2 c

⎤

⎦ reduces to−−−−−−−→

⎡

⎣
2 3 −1 a
0 5 5 a + 2b
0 0 0 −a − b + c

⎤

⎦ ,

then a vector is in the range of T if and only if
−a − b + c = 0 and hence, T is not onto.

11. Since T (e1) =

[
−1
3

]
and T (e2) =

[
−2
0

]
are two linear independent vectors in R2, they form a basis.

12. Since T (e2) =

[
0
0

]
, the set is not a basis. 13. Since T (e1) =

[
3
−3

]
and T (e2) =

[
−1
−1

]

are two linear independent vectors in R2, they
form a basis.

14. Since T (e2) = 2T (e1), the set is not a basis. 15. Since T (e1) =

⎡

⎣
−1
0
0

⎤

⎦ , T (e2) =

⎡

⎣
−1
1
0

⎤

⎦ ,

and T (e3) =

⎡

⎣
2
−1
5

⎤

⎦ are three linear indepen-

dent vectors in R3, they form a basis.

16. Since

∣∣∣∣∣∣

2 3 −1
2 6 3
4 9 2

∣∣∣∣∣∣
= 0, the set is linearly

dependent and hence, is not a basis.

17. Since

∣∣∣∣∣∣

4 −2 1
2 0 1
2 −1 3/2

∣∣∣∣∣∣
= 4, the set is linearly

independent and hence, is a basis.Is a basis.

18. Since

∣∣∣∣∣∣

1 −1 2
−1 2 −1
0 −1 5

∣∣∣∣∣∣
= 6, the set is linearly independent and hence, is a basis.

19. Since T (1) = x2, T (x) = x2 + x and T (x2) =
x2 +x+1, are three linearly independent polyno-
mials the set is a basis.

20. Since T (1) = 0, the set is not a basis.

21. a. Since det(A) = det

([
1 0

−2 −3

])
= −3 ̸= 0, then the matrix A is invertible and hence, T is an

isomorphism. b. A−1 = − 1
3

[
−3 0

2 1

]
c. Let w =

[
x
y

]
. To show that T−1(w) = A−1w, we will show

that A−1(T (w)) = w. That is,

A−1T

([
x
y

])
=

[
1 0

−2/3 −1/3

] [
x

−2x − 3y

]
=

[
x
y

]
.

22. a. Since det(A) = det

([
−2 3
−1 −1

])
= 5 ̸= 0, then the matrix A is invertible and hence, T is an

isomorphism. b. A−1 = 1
5

[
−1 −3

1 −2

]
c. Let w =

[
x
y

]
. To show that T−1(w) = A−1w, we will show

that A−1(T (w)) = w. That is,

A−1T

([
x
y

])
=

1

5

[
−1 −3

1 −2

] [
−2x + 3y
−x − y

]
=

1

5

[
5x
5y

]
=

[
x
y

]
.
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102 Chapter 4 Linear Transformations

• The coordinates of any vector T (v) can be found using the matrix product

[T (v))]B′ = [T ]B
′

B [v]B .

• As an example, let v =

⎡

⎣
1
−2
−4

⎤

⎦ , then after applying the operator T the coordinates relative to B′ is

given by ⎡

⎣T

⎛

⎝

⎡

⎣
1
−2
−4

⎤

⎦

⎞

⎠

⎤

⎦

B′

=

⎡

⎣
1/2 −1 1/2
−1/2 1 1/2
−1/2 0 −1/2

⎤

⎦

⎡

⎣

⎡

⎣
1
−2
−4

⎤

⎦

⎤

⎦

B

.

Since B is the standard basis the coordinates of a vector are just the components, so
⎡

⎣T

⎛

⎝

⎡

⎣
1
−2
−4

⎤

⎦

⎞

⎠

⎤

⎦

B′

=

⎡

⎣
1/2 −1 1/2
−1/2 1 1/2
−1/2 0 −1/2

⎤

⎦

⎡

⎣
1
−2
−4

⎤

⎦ =

⎡

⎣
1/2
−9/2
3/2

⎤

⎦ .

This vector is not T (v), but the coordinates relative to the basis B′. Then

T

⎛

⎝

⎡

⎣
1
−2
−4

⎤

⎦

⎞

⎠ =
1

2

⎡

⎣
1
1
1

⎤

⎦ −
9

2

⎡

⎣
1
0
1

⎤

⎦ +
3

2

⎡

⎣
2
1
0

⎤

⎦ =

⎡

⎣
−1
2

−7/2

⎤

⎦ .

Other useful formulas that involve combinations of linear transformations and the matrix representation
are:

• [S+T ]B
′

B = [S]B
′

B +[T ]B
′

B • [kT ]B
′

B = k[T ]B
′

B • [S◦T ]B
′

B = [S]B
′

B [T ]B
′

B • [T n]B = ([T ]B)n • [T−1]B = ([T ]B)−1

Solutions to Exercises

1. a. Let B = {e1, e2} be the standard basis. To find the matrix representation for A relative to B, the column
vectors are the coordinates of T (e1) and T (e2) relative to B. Recall the coordinates of a vector relative to

the standard basis are just the components of the vector. Hence, [T ]B = [ [T (e1]B [T (e2]B ] =

[
5 −1

−1 1

]
.

b. The direct computation is T

[
2
1

]
=

[
9
−1

]
and using part (a), the result is

T

[
2
1

]
=

[
5 −1

−1 1

] [
2
1

]
=

[
9
−1

]
.

2. a. [T ]B =

[
−1 0

0 1

]
b. The direct computation is T

[
−1
3

]
=

[
1
3

]
and using part (a), the result is

T

[
−1
3

]
=

[
−1 0

0 1

] [
−1
3

]
=

[
1
3

]
.

3. a. Let B = {e1, e2, e3} be the standard basis. Then [T ]B = [ [T (e1]B [T (e2]B [T (e2]B ] =⎡

⎣
−1 1 2
0 3 1
1 0 −1

⎤

⎦ . b. The direct computation is T

⎡

⎣
1
−2
3

⎤

⎦ =

⎡

⎣
3
−3
−2

⎤

⎦ , and using part (a) the result is

T

⎡

⎣
1
−2
3

⎤

⎦ =

⎡

⎣
−1 1 2
0 3 1
1 0 −1

⎤

⎦

⎡

⎣
1
−2
3

⎤

⎦ =

⎡

⎣
3
−3
−2

⎤

⎦ .

Preview from Notesale.co.uk

Page 105 of 185



106 Chapter 4 Linear Transformations

31. Since [T ]B =

⎡

⎢⎢⎢⎢
⎣

0 0 0 6 0
0 0 0 0 24
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥⎥⎥⎥
⎦

and [T (p(x)]B =

⎡

⎢⎢⎢⎢
⎣

−12
−48
0
0
0

⎤

⎥⎥⎥⎥
⎦

, then T (p(x)) = p′′′(x) = −12 − 48x.

32. Since B is the standard basis, then [T (1)]B = [1]B =

⎡

⎣
1
0
0

⎤

⎦ , [T (x)]B = [2x]B =

⎡

⎣
0
2
0

⎤

⎦ , and [T (x2)]B =

[3x2]B =

⎡

⎣
0
0
3

⎤

⎦ , so [T ]B =

⎡

⎣
1 0 0
0 2 0
0 0 3

⎤

⎦ .

33. [S]B
′

B =

⎡

⎢⎢
⎣

0 0 0
1 0 0
0 1 0
0 0 1

⎤

⎥⎥
⎦ , [D]B

′

B =

⎡

⎣
0 1 0 0
0 0 2 0
0 0 0 3

⎤

⎦ , [D]B
′

B [S]B
′

B =

⎡

⎣
1 0 0
0 2 0
0 0 3

⎤

⎦ = [T ]B

34. The linear operator that reflects a vector through the line perpendicular to

[
1
1

]
, that is reflects across

the line y = −x, is given by T

[
x
y

]
=

[
−y
−x

]
, so

[T ]B =

[ [
−1
−1

]

B

[
−1
0

]

B

]
=

[
−1 −1

0 1

]
.

35. If A =

[
a b
c d

]
, then the matrix representation for T is [T ]S =

⎡

⎢⎢
⎣

0 −c b 0
−b a − d 0 b
c 0 d − a −c
0 c −b 0

⎤

⎥⎥
⎦ .

36. Since T (v) = v is the identity map, then

[T ]B
′

B = [ [T (v1)]B′ [T (v2)]B′ [T (v3)]B′ ] = [ [v1]B′ [v2]B′ [v3]B′ ] =

⎡

⎣
0 1 0
1 0 0
0 0 1

⎤

⎦ .

If [v]B =

⎡

⎣
a
b
c

⎤

⎦ , then [v]B′ =

⎡

⎣
b
a
c

⎤

⎦ . The matrix [T ]B
′

B can be obtained from the identity matrix by

interchanging the first and second columns.

37.

[T ]B = [ [T (v1)]B [T (v2)]B . . . [T (vn) ]B = [ [v1]B [v1+v2]B . . . [vn−1+vn ]B ] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 1 0 0 . . . . . . 0 0
0 1 1 0 . . . . . . 0 0
0 0 1 1 . . . . . . 0 0
...

...
...

...
...

...
...

...
0 0 0 0 0 . . . 1 0
0 0 0 0 0 . . . 1 1
0 0 0 0 0 . . . 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

Exercise Set 4.5

If T : V −→ V is a linear operator the matrix representation of T relative to a basis B, denoted [T ]B
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4.6 Application: Computer Graphics 111

b.

x 

y 

210

210

10

10

c. The matrix that will reverse the action of the oper-
ator T is the inverse of [T ]S . That is,

[T ]−1
S =

[
1/3 0

0 −2

]
.

4. a. The matrix representation relative to the standard basis S is the product of the matrix representations
for the three separate operators. That is,

[T ]S =

[
1 2
0 1

] [
−1 0

0 1

]
=

[
−1 2

0 1

]
.

b.

x 

y 

25

25

5

5

c. The matrix that will reverse the action of the oper-
ator T is the inverse of [T ]S . That is,

[T ]−1
S =

[
1 −2
0 −1

]
.

5. a.

[T ]S =

[
−
√

2/2
√

2/2
−
√

2/2 −
√

2/2

]
b.

x 

y 

25

25

5

5

c.

[T ]−1
S =

[
−
√

2/2 −
√

2/2√
2/2 −

√
2/2

]

6. a.

[T ]S =

[
0 −1
1 0

] [
0 1
1 0

]

=

[
−1 0

0 1

]

b.

x 

y 

25

25

5

5

c.

[T ]−1
S =

[
−1 0

0 1

]

d. The transformation is a re-
flection through the y-axis.

7. a. [T ]S =

⎡

⎣

√
3/2 −1/2 0

1/2
√

3/2 0
0 0 1

⎤

⎦

⎡

⎣
1 0 1
0 1 1
0 0 1

⎤

⎦ =

⎡

⎣

√
3/2 −1/2

√
3/2 − 1/2

1/2
√

3/2
√

3/2 + 1/2
0 0 1

⎤

⎦
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116 Chapter 4 Linear Transformations

9. Since T 2 − T + I = 0, T − T 2 = I. Then

(T ◦ (I − T ))(v) = T ((I − T )(v)) = T (v − T (v)) = T (v) − T 2(v) = I(v) = v.

10. a. The point-slope equation of the line that passes through the points given by u =

[
u1

u2

]
and v =

[
v1

v2

]

is y = v2−u2

v1−u1
(x−u1)+u2. Now consider tu+(1− t)v =

[
tu1 + (1 − t)v1

tu2 + (1 − t)v2

]
and show the components satisfy

the point-slope equation. That is,

v2 − u2

v1 − u1
(tu1 + (1 − t)v1 − u1) + u2 =

v2 − u2

v1 − u1
(t(u1 − v1) + ((v1 − u1)) + u2

= (v2 − u2)(1 − t) + u2 = (1 − t)v2 − u2(1 − t) + u2

= tu2 + (1 − t)v2.

b. Since T (tu + (1 − t)v) = tT (u) + (1 − t)T (v), then the image of a line segment is another line segment.
c. Let w1 and w2 be two vectors in T (S). Since T is one-to-one and onto there are unique vectors v1 and v2

in S such that T (v1) = w1 and T (v2) = w2. Since S is a convex set for 0 ≤ t ≤ 1, we have tv1+(1− t)v2 is in
S and hence, T (tv1+(1−t)v2) is in S. But T (tv1+(1−t)v2) = tT (v1)+(1−t)T (v2) = tw1+(1−t)w2, which
is in T (S) and hence, T (S) is a convex set. d. Since T is one-to-one and onto the linear transformation is

an isomorphism. To find the image of S, let

[
x
y

]
be a vector in S and let T

[
x
y

]
=

[
u
v

]
, so that u = 2x,

and v = y. Then
(u

2

)2
+ v2 = x2 + y2 = 1. Therefore, T (S) =

{[
u
v

]∣∣∣∣
u2

4
+ v2 = 1

}
, which is an ellipse in

R2.

Chapter Test Chapter 4

1. F.

T (u + v) ̸= T (u) + T (v)

since the second component of
the sum will contain a plus 4.

2. F. Since

T (x + y) = 2x + 2y − 1

but

T (x) + T (y) = 2x + 2y − 2.

3. T

4. T 5. T 6. F. Since

T (u) =
1

3
T (2u− v) +

1

3
T (u + v)

=
1

3

[
1
1

]
+

1

3

[
0
1

]
=

[
1/3
2/3

]
.

7. F. Since

N(T ) =

{[
2t
t

]∣∣∣∣ t ∈ R
}

8. F. If T is one-to-one, then the
set is linearly independent.

9. T

10. F. For example, T (1) = 0 =
T (2).

11. T 12. F. Since, for every k,

T

([
k
k

])
=

[
0
0

]
.

13. T 14. T 15. T

16. T 17. T 18. T
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118 Chapter 5 Eigenvalues and Eigenvectors

5 Eigenvalues and Eigenvectors

Exercise Set 5.1

An eigenvalue of the n × n matrix A is a number λ such that there is a nonzero vector v with Av = λv.
So if λ and v are an eigenvalue–eigenvector pair, then the action on v is a scaling of the vector. Notice that
if v is an eigenvalue corresponding to the eigenvalue λ, then

A(cv) = cAv = c(λv) = λ(cv),

so A will have infinitely many eigenvectors corresponding to the eigenvalue λ. Also recall that an eigenvalue
can be 0 (or a complex number), but eigenvectors are only nonzero vectors. An eigenspace is the set of all
eigenvectors corresponding to an eigenvalue λ along with the zero vector, and is denoted by Vλ = {v ∈ Rn |
Av = λv}. Adding the zero vector makes Vλ a subspace. The eigenspace can also be viewed as the null space
of A − λI. To determine the eigenvalues of a matrix A we have:

λ is an eigenvalue of A ⇔ det(A − λI) = 0.

The last equation is the characteristic equation for A. As an immediate consequence, if A is a triangular
matrix, then the eigenvalues are the entries on the diagonal. To then find the corresponding eigenvectors,
for each eigenvalue λ, the equation Av = λv is solved for v. An outline of the typical computations for the

matrix A =

⎡

⎣
−1 1 −2
1 −1 2
1 0 1

⎤

⎦ are:

• To find the eigenvalues solve the equation det(A − λI) = 0. Expanding across row three, we have that
∣∣∣∣∣∣

−1 − λ 1 −2
1 −1 − λ 2
1 0 1 − λ

∣∣∣∣∣∣
=

∣∣∣∣
1 −2

−1 − λ 2

∣∣∣∣ + (1 − λ)

∣∣∣∣
−1 − λ 1

1 −1 − λ

∣∣∣∣ = −λ2 − λ3.

Then det(A − λI) = 0 if and only if

−λ2 − λ3 = −λ2(1 + λ) = 0, so the eigenvalues are λ1 = 0, λ2 = 0.

• To find the eigenvectors corresponding to λ1 = 0 solve Av = 0. Since
⎡

⎣
−1 1 −2
1 −1 2
1 0 1

⎤

⎦ reduces to−−−−−−−→

⎡

⎣
−1 1 −2
0 1 −1
0 0 0

⎤

⎦ ,

the eigenvectors are of the form

⎡

⎣
−t
t
t

⎤

⎦ , for any t ̸= 0. Similarly, the eigenvectors of λ2 = −1 have the

from

⎡

⎣
−2t
2t
t

⎤

⎦ , t ̸= 0.

• The eigenspaces are V0 =

⎧
⎨

⎩
t

⎡

⎣
−1
1
1

⎤

⎦

∣∣∣∣∣∣
t ∈ R3

⎫
⎬

⎭
and V−1 =

⎧
⎨

⎩
t

⎡

⎣
−2
2
1

⎤

⎦

∣∣∣∣∣∣
t ∈ R3

⎫
⎬

⎭
.

• Notice that there are only two linearly independent eigenvectors of A, the algebraic multiplicity of λ1 = 0
is 2, the algebraic multiplicity of λ2 = −1 is 1, and the geometric multiplicities are both 1. For a 3 × 3
matrix other possibilities are:
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Exercise Set 5.3

1. The strategy is to uncouple the system of differential equations. Writing the system in matrix form, we
have that

y′ = Ay =

[
−1 1

0 −2

]
y.

The next step is to diagonalize the matrix A. Since A is triangular the eigenvalues of A are the diagonal

entries −1 and −2, with corresponding eigenvectors

[
1
0

]
and

[
−1
1

]
, respectively. So A = PDP−1,

where P =

[
1 −1
0 1

]
, P−1 =

[
1 1
0 1

]
, and D =

[
−1 0

0 −2

]
. The related uncoupled system is w′ =

P−1APw =

[
−1 0

0 −2

]
w. The general solution to the uncoupled system is w(t) =

[
e−t 0

0 e−2t

]
w(0).

Finally, the general solution to the original system is given by y(t) = P

[
e−t 0

0 e−2t

]
P−1y(0). That is,

y1(t) = (y1(0) + y2(0))e−t − y2(0)e−2t, y2(t) = y2(0)e−2t.

2. Let A =

[
−1 2

1 0

]
. Then the eigenvalues of A are 1 and −2 with corresponding eigenvectors

[
1
1

]
,

and

[
−2
1

]
, respectively. So A = PDP−1 =

[
1 −2
1 1

] [
1 0
0 −2

] [
1/3 2/3

−1/3 1/3

]
and hence, w′(t) =

P−1APw =

[
et 0
0 e−2t

]
. Then the general solution to the uncoupled system is w(t) =

[
et 0
0 e−2t

]
w(0)

and hence y(t) = P

[
et 0
0 e−2t

]
P−1y(0), that is,

y1(t) =
1

3
(y1(0) + 2y2(0))et +

2

3
(y1(0) − y2(0))e−2t, y2(t) =

1

3
(y1(0) + 2y2(0))et +

1

3
(−y1(0) + y2(0))e−2t.

3. Using the same approach as in Exercise (1), we let A =

[
1 −3

−3 1

]
. The eigenvalues of A are 4 and −2

with corresponding eigenvectors

[
−1
1

]
and

[
1
1

]
, respectively, so that

A = 1
2

[
−1 1

1 1

] [
4 0
0 −2

] [
−1 1

1 1

]
. So the general solution is given by y(t) = P

[
e4t 0

0 e−2t

]
P−1y(0),

that is

y1(t) =
1

2
(y1(0) − y2(0))e4t +

1

2
(y1(0) + y2(0))e−2t, y2(t) =

1

2
(−y1(0) + y2(0))e4t +

1

2
(y1(0) + y2(0))e−2t.

4. Let A =

[
1 −1

−1 1

]
. Then the eigenvalues of A are 0 and 2 with corresponding eigenvectors

[
1
1

]
,

and

[
−1
1

]
, respectively. So A = PDP−1 =

[
1 −1
1 1

] [
0 0
0 2

] [
1/2 1/2

−1/2 1/2

]
and hence, w′(t) =

P−1APw =

[
1 0
0 e−2t

]
. Then the general solution to the uncoupled system is w(t) =

[
1 0
0 e2t

]
w(0) and

hence y(t) = P

[
1 0
0 e2t

]
P−1y(0), that is,

y1(t) =
1

2
(y1(0) + y2(0)) +

1

2
(y1(0) − y2(0))e2t, y2(t) =

1

2
(y1(0) + y2(0)) +

1

2
(−y1(0) + y2(0))e2t.
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134 Chapter 5 Eigenvalues and Eigenvectors

b. The graphs of y(λ) = λ3−3λ+k for different values
of k are shown in the figure.

k = 0

k = -4

k = -3

k = -2.5

k = 2.5

k = 3

k = 4

c. The matrix will have three distinct real eigenvalues
when the graph of y(λ) = λ3−3λ+k crosses the x-axis
three time. That is, for
−2 < k < 2.

6. Since B = P−1AP, we have that A = PBP−1. Suppose Bv = λv, so v is an eigenvector of B corresponding
to the eigenvalue λ. Then

A(Pv) = PBP−1Pv = PBv = P (λv) = λPv

and hence, Pv is an eigenvector of A corresponding to the eigenvalue λ.

7. a. Let v =

⎡

⎢⎢⎢
⎣

1
1
...
1

⎤

⎥⎥⎥
⎦

. Then each component of the vector Av has the same value equal to the common row

sum λ. That is, Av =

⎡

⎢⎢⎢
⎣

λ
λ
...
λ

⎤

⎥⎥⎥
⎦

= λ

⎡

⎢⎢⎢
⎣

1
1
...
1

⎤

⎥⎥⎥
⎦

, so λ is an eigenvalue of A corresponding to the eigenvector v. b.

Since A and At have the same eigenvalues, then the same result holds if the sum of each column of A is equal
to λ.

8. a. Since T is a linear operator T (0) = 0, so {0} is invariant. And for every v in V, then T (v) is in V so
V is invariant. b. Since dim(W ) = 1, there is a nonzero vector w0 such that W = {aw0 | a ∈ R}. Then
T (w0) = w1 and since W is invariant, w0 is in W. So there is some λ such that w1 = λw0. Hence, w0 is
an eigenvector of T. c. By part (a), R2 and {0} are invariant subspaces of the linear operator T. Since the
matrix representation for T is given relative to the standard basis,

T (v) = λv ⇔ T (v) =

[
0 −1
1 0

]
v =

[
0 −1
1 0

] [
v1

v2

]
⇔ v1 = v2 = 0.

By part (b), the only invariant subspaces of T are R2 and {0}.
9. a. Suppose w is in S(Vλ0

), so that w = S(v) for some eigenvector v of T corresponding to λ0. Then

T (w) = T (S(v)) = S(T (v)) = S(λ0v) = λ0S(v) = λ0w.

Hence, S(Vλ0
) ⊆ Vλ0

.

b. Let v be an eigenvector of T corresponding to the eigenvalue λ0. Since T has n distinct eigenvalues then
dim (Vλ0

) = 1 with Vλ0
= span{v}. Now by part (a), T (S(v)) = λ0(S(v)), so that S(v) is also an eigenvector

of T and in span{v}. Consequently, there exists a scalar µ0 such that S(v) = µ0v, so that v is also an
eigenvector of S.
c. Let B = {v1,v2, . . . ,vn} be a basis for V consisting of eigenvectors of T and S. Thus there exist scalars
λ1, λ2, . . . , λn and µ1, µ2, . . . , µn such that T (vi) = λivi and S(vi) = µivi, for 1 ≤ i ≤ n. Now let v be a
vector in V . Since B is a basis for V then there are scalars c1, c2, . . . , cn such that v = c1v1+c2v2+. . .+cnvn.
Applying the operator ST to both sides of this equation we obtain

ST (v) = ST (c1v1 + c2v2 + . . . + cnvn) = S(c1λ1v1 + c2λ2v2 + . . . + cnλnvn)

= c1λ1µ1v1 + c2λ2µ2v2 + . . . + cnλnµnvn = c1µ1λ1v1 + c2µ2λ2v2 + . . . + cnµnλnvn

= T (c1µ1v1 + c2µ2v2 + . . . + cnµnvn) = TS(c1v1 + c2v2 + . . . + cnvn) = TS(v).
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138 Chapter 6 Inner Product Spaces

Solutions to Exercises

1. u · v = (0)(1) + (1)(−1) + (3)(2) = 5 2. u·v
v·v = 0−1+6

1+1+4 = 5
6

3.

u · (v + 2w) = u ·

⎡

⎣
3
1
−4

⎤

⎦ = 0 + 1 − 12 = −11

4. u·w
w·ww = 0+1−9

1+1+9

⎡

⎣
1
1
−3

⎤

⎦ = − 8
11

⎡

⎣
1
1
−3

⎤

⎦

5. ∥ u ∥=
√

12 + 52 =
√

26 6. ||u− v|| =

√[
−1
4

]
·
[

−1
4

]
=

√
17

7. Divide each component of the vector by the

norm of the vector, so that 1√
26

[
1
5

]
is a unit

vector in the direction of u.

8. Since cos θ = u·v
||u||||v|| = 7√

26
√

5
, then the vec-

tors are not orthogonal.

9. 10√
5

[
2
1

]
10. The vector w is orthogonal to u and v if and
only if w1 + 5w2 = 0 and 2w1 + w2 = 0, that is,
w1 = 0 = w2.

11. ∥ u ∥=
√

(−3)2 + (−2)2 + 32 =
√

22 12. ||u − v|| =
√

(u − v) · (u − v)

=

√√√√√

⎡

⎣
−2
−1
6

⎤

⎦ ·

⎡

⎣
−2
−1
6

⎤

⎦ =
√

41

13. 1√
22

⎡

⎣
−3
−2
3

⎤

⎦ 14. Since cos θ = − 4
11

√
2
̸= 0, then the vectors

are not orthogonal.

15. − 3√
11

⎡

⎣
−1
−1
−3

⎤

⎦ = 3√
11

⎡

⎣
1
1
3

⎤

⎦ 16. A vector w is orthogonal to both vectors

if and only if

{
−3w1 − 2w2 + 3w3 = 0

−w1 − w2 − 3w3 = 0
⇔

w1 = 9w3, w2 = −12w3. So all vectors in

span

⎧
⎨

⎩

⎡

⎣
9

−12
1

⎤

⎦

⎫
⎬

⎭
are orthogonal to the two vec-

tors.

17. Since two vectors in R2 are orthogonal if and

only if their dot product is zero, solving

[
c
3

]
·

[
−1
2

]
= 0, gives −c + 6 = 0, that is, c = 6.

18.

⎡

⎣
−1
c
2

⎤

⎦ ·

⎡

⎣
0
2
−1

⎤

⎦ = 0 + 2c − 2 = 0 ⇔ c = 1

19. The pairs of vectors with dot product equal-
ing 0 are v1⊥v2, v1⊥v4, v1⊥v5, v2⊥v3, v3⊥v4,
and v3⊥v5.

20. The vectors v2 and v5 are in the same direc-
tion.

21. Since v3 = −v1, the vectors v1 and v3 are
in opposite directions.

22. ||v4|| =
√

1
3 + 1

3 + 1
3 = 1
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6.1 The Dot Product on Rn 139

23. w =

[
2
0

]

x 

y 

25

25

5

5

u

vw

24. w =

[
−2
0

]

x 

y 

25

25

5

5

u

vw

25. w = 3
2

[
3
1

]

x 

y 

25

25

5

5

u

v
w

26. w =

⎡

⎣
5
0
0

⎤

⎦

u

v

w

27. w = 1
6

⎡

⎣
5
2
1

⎤

⎦

u

v

w

28. w = 3
13

⎡

⎣
0
2
3

⎤

⎦

u

v

w

29. Let u be a vector in
span{u1,u2, · · · ,un}. Then there exist scalars c1, c2, · · · , cn such that

u = c1u1 + c2u2 + · · · + cnun.

Using the distributive property of the dot product gives

v · u = v · (c1u1 + c2u2 + . . . + cnun)

= c1(v · u1) + c2(v · u2) + · · · + cn(v · un)

= c1(0) + c2(0) + · · · + cn(0) = 0.

30. If u and w are in S and c is a scalar, then

(u + cw) · v = u · v + c(w · v) = 0 + 0 = 0

and hence, S is a subspace.
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148 Chapter 6 Inner Product Spaces

19. An orthonormal basis for
span(W ) is

⎧
⎨

⎩
1√
3

⎡

⎣
1
1
1

⎤

⎦ ,
1√
6

⎡

⎣
2
−1
−1

⎤

⎦

⎫
⎬

⎭
.

20. An orthonormal basis for
span(W ) is

⎧
⎨

⎩

√
2

2

⎡

⎣
0
1
1

⎤

⎦ ,

√
3

3

⎡

⎣
−1
−1
1

⎤

⎦

⎫
⎬

⎭
.

21. An orthonormal basis for
span(W ) is

⎧
⎪⎪⎨

⎪⎪⎩

1√
6

⎡

⎢⎢
⎣

−1
−2
0
1

⎤

⎥⎥
⎦ ,

1√
6

⎡

⎢⎢
⎣

−2
1
−1
0

⎤

⎥⎥
⎦ ,

1√
6

⎡

⎢⎢
⎣

1
0
−2
1

⎤

⎥⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭
.

22. An orthonormal basis for
span(W ) is

⎧
⎪⎪⎨

⎪⎪⎩

√
5

5

⎡

⎢⎢
⎣

1
−2
0
0

⎤

⎥⎥
⎦ ,

√
15

15

⎡

⎢⎢
⎣

2
1
1
−1

⎤

⎥⎥
⎦ ,−

√
30

30

⎡

⎢⎢
⎣

−2
−1
0
5

⎤

⎥⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭
.

23. An orthonormal basis for
span(W ) is

{√
3x, − 3x + 2

}
.

24. An orthogonal basis for
span(W ) is

{
1, 12x − 6,−

5

2
x3 +

9

4
x −

1

2

}

and an orthonormal basis is
{

1,
1√
12

(12x − 6),
4
√

7

3

(
−

5

2
x3 +

9

4
x −

1

2

)}

.

25. An orthonormal basis for span(W ) is⎧
⎪⎪⎨

⎪⎪⎩

1√
3

⎡

⎢⎢
⎣

1
0
1
1

⎤

⎥⎥
⎦ , 1√

3

⎡

⎢⎢
⎣

0
1
−1
1

⎤

⎥⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭
.

26. An orthonormal basis for span(W ) is⎧
⎨

⎩
1√
5

⎡

⎣
2
0
1

⎤

⎦ , 1√
30

⎡

⎣
1
5
−2

⎤

⎦

⎫
⎬

⎭
.

27. Let v be a vector in V and B = {u1,u2, . . . ,un} an orthonormal basis for V . Then there exist scalars
c1, c2, . . . , cn such that v = c1u1 + c2u2 + · · · + cnun. Then

||v||2 = v · v = c2
1(u1 · u1) + c2

2(u2 · u2) + · · · + c2
n(un · un).

Since B is orthonormal each vector in B has norm one, 1 = ||ui||2 = ui · ui and they are pairwise orthogonal,
so u1 · uj = 0, for i ̸= j. Hence,

||v||2 = c2
1 + c2

2 + · · · + c2
n = |v · u1|2 + · · · + |v · un|2.

28. To show the three statements are equivalent we will show that (a)⇒(b), (b)⇒(c) and (c)⇒(a).

• (a)⇒(b): Suppose that A−1 = At. Since AAt = I, then the row vectors are orthonormal. Since they
are orthogonal they are linearly independent and hence a basis for Rn.

• (b)⇒(c): Suppose the row vectors of A are orthonormal. Then AtA = I and hence the column vectors
of A are orthonormal.

• (c)⇒(a): Suppose the column vectors are orthonormal. Then AAt = I and hence, A is invertible with
A−1 = At.
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154 Chapter 6 Inner Product Spaces

The vector v =

⎡

⎢⎢
⎣

x
y
z
w

⎤

⎥⎥
⎦ is in W⊥ if and only if it is orthogonal to each of the three vectors that generate W, so

that x−w = 0, y−w = 0, z−w = 0, z ∈ R. Hence, a basis for the orthogonal complement of W is

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢
⎣

1
1
1
1

⎤

⎥⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭
.

16. The two vectors that span W are linearly independent but are not orthogonal. Using the Gram-Schmidt

process an orthogonal basis is

⎧
⎨

⎩

⎡

⎣
1
0
−1

⎤

⎦ ,

⎡

⎣
3/2
1

3/2

⎤

⎦

⎫
⎬

⎭
. Then

projW v =

⎡

⎣
1
−2
2

⎤

⎦ ·

⎡

⎣
1
0
−1

⎤

⎦

⎡

⎣
1
0
−1

⎤

⎦ ·

⎡

⎣
1
0
−1

⎤

⎦

⎡

⎣
1
0
−1

⎤

⎦ +

⎡

⎣
1
−2
2

⎤

⎦ ·

⎡

⎣
3/2
1

3/2

⎤

⎦

⎡

⎣
3/2
1

3/2

⎤

⎦ ·

⎡

⎣
3/2
1

3/2

⎤

⎦

⎡

⎣
3/2
1

3/2

⎤

⎦ =
1

11

⎡

⎣
2
5
13

⎤

⎦ .

17. The two vectors that span W are linearly independent and orthogonal, so that an orthogonal basis for

W is B =

⎧
⎨

⎩

⎡

⎣
2
0
0

⎤

⎦ ,

⎡

⎣
0
−1
0

⎤

⎦

⎫
⎬

⎭
. Then

projW v =

⎡

⎣
1
2
−3

⎤

⎦ ·

⎡

⎣
2
0
0

⎤

⎦

⎡

⎣
2
0
0

⎤

⎦ ·

⎡

⎣
2
0
0

⎤

⎦

⎡

⎣
2
0
0

⎤

⎦ +

⎡

⎣
1
2
−3

⎤

⎦ ·

⎡

⎣
0
−1
0

⎤

⎦

⎡

⎣
0
−1
0

⎤

⎦ ·

⎡

⎣
0
−1
0

⎤

⎦

⎡

⎣
0
−1
0

⎤

⎦

=
2

4

⎡

⎣
2
0
0

⎤

⎦ +
−2

1

⎡

⎣
0
−1
0

⎤

⎦ =

⎡

⎣
1
2
0

⎤

⎦ .

18. The two vectors that span W are linearly independent but not orthogonal. Using the Gram-Schmidt

process an orthogonal basis for W is B =

⎧
⎨

⎩

⎡

⎣
3
−1
1

⎤

⎦ ,

⎡

⎣
2
14
8

⎤

⎦

⎫
⎬

⎭
. Then

projWv =

⎡

⎣
5
−3
1

⎤

⎦ ·

⎡

⎣
3
−1
1

⎤

⎦

⎡

⎣
3
−1
1

⎤

⎦ ·

⎡

⎣
3
−1
1

⎤

⎦

⎡

⎣
3
−1
1

⎤

⎦ +

⎡

⎣
5
−3
1

⎤

⎦ ·

⎡

⎣
2
14
8

⎤

⎦

⎡

⎣
2
14
8

⎤

⎦ ·

⎡

⎣
2
14
8

⎤

⎦

⎡

⎣
2
14
8

⎤

⎦ =
19

11

⎡

⎣
3
−1
1

⎤

⎦ −
1

11

⎡

⎣
1
14
8

⎤

⎦ =

⎡

⎣
5
−3
1

⎤

⎦ .

Observe that

⎡

⎣
5
−3
1

⎤

⎦ is contained in the subspace W.
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Let v1 =

[
a
b

]
and let θ be the angle that v1 makes with the horizontal axis. Since a2 + b2 = 1, then v1 is

a unit vector. Therefore a = cos θ and b = sin θ. Now let v2 =

[
c
d

]
. Since ac + bd = 0 then v1 and v2 are

orthogonal. There are two cases.

Case 1. c = cos θ + π/2 = − sin θ and d = sin θ + π/2 = cos θ, so that A =

[
cos θ sin θ

− sin θ cos θ

]
.

Case 2. c = cos θ − π/2 = sin θ and d = sin θ − π/2 = − cos θ, so that A =

[
cos θ sin θ
sin θ − cos θ

]
.

c. If det(A) = 1, then by part (b), T (v) = Av with A =

[
cos θ sin θ

− sin θ cos θ

]
. Therefore

T (v) =

[
cos θ sin θ

− sin θ cos θ

] [
x
y

]
=

[
cos (−θ) − sin (−θ)
sin (−θ) cos (−θ)

] [
x
y

]
,

which is a rotation of a vector by −θ radians. If det(A) = −1, then by part (b), T (v) = A′v with A′ =[
cos θ sin θ
sin θ − cos θ

]
. Observe that

A′ =

[
cos θ − sin θ
sin θ cos θ

] [
1 0
0 −1

]
.

Hence, in this case, T is a reflection through the x-axis followed by a rotation through the angle θ.
28. Suppose A and B are orthogonally similar, so B = P tAP, where P is an orthogonal matrix. Since P is
orthogonal P−1 = P t.
a. First suppose A is symmetric, so At = A. Then Bt = (P tAP )t = P tAtP = P tAP = B and hence, B is
symmetric. Conversely, suppose B is symmetric, so B = Bt. Since B = P tAP = P−1AP, then A = PBP−1.
Then At = (PBP−1)t = (PBP t)t = PBtP t = PBP t = A and hence, A is symmetric.
b. First suppose A is orthogonal, so A−1 = At. Then B−1 = (P tAP )−1 = P−1A−1P = P tAtP = (P tAP )t =
Bt and hence, B is orthogonal. Conversely, suppose B is orthogonal, so B−1 = Bt. Since B = P tAP =
P−1AP, then A = PBP−1. Then A−1 = (PBP−1)−1 = PB−1P−1 = PBtP t = (P tBP )t = At and hence, A
is orthogonal.

29. Suppose D = P tAP, where P is an orthogonal matrix, that is P−1 = P t. Then

Dt = (P tAP )t = P tAtP.

Since D is a diagonal matrix then Dt = D, so we also have D = P tAtP and hence, P tAP = P tAtP. Then
P (P tAP )P t = P (P tAtP )P t. Since PP t = I, we have that A = At, and hence, the matrix A is symmetric.

30. Suppose A−1 exists and D = P tAP, where D is a diagonal matrix and P is orthogonal. Since D = P tAP =
P−1AP, then A = PDP−1. Then A−1 = (PDP−1)−1 = PD−1P−1, so D−1 = P−1A−1P = P tA−1P and
hence A−1 is orthogonally diagonalizable.

31. a. If v =

⎡

⎢⎢⎢
⎣

v1

v2
...

vn

⎤

⎥⎥⎥
⎦

, then vtv = v2
1 + . . . + v2

n.

b. Consider the equation Av = λv. Now take the transpose of both sides to obtain vtAt = λvt. Since A is
skew symmetric this is equivalent to

vt(−A) = λvt.

Now, right multiplication of both sides by v gives vt(−Av) = λvtv or equivalently, vt(−λv) = λvtv. Hence,
2λvtv = 0, so that by part (a),

2λ(v2
1 + . . . + v2

n) = 0, that is λ = 0 or v = 0.
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166 Chapter 6 Inner Product Spaces

P =
1√
10

[
1 3

−3 1

]
and D =

[
20 0
0 10

]
,

so that the equation is transformed to

(x′)tDx′ + btPx′ + f = 0, that is 20(x′)2 + 10(y′)2 −
√

10x′ +
√

10y′ − 12 = 0.

5. The transformed quadratic equation is
(x′)2

2 − (y′)2

4 = 1.

6. The transformed quadratic equation is
(y′)2

2 − (x′)2

2 = 1.

7. a. [x y]

[
4 0
0 16

] [
x
y

]
− 16 = 0 b. The action of the matrix

P =

[
cos π

4 − sin π
4

sin π
4 cos π

4

]
=

[ √
2

2 −
√

2
2√

2
2

√
2

2

]

on a vector is a counter clockwise rotation of 45◦. Then P

[
4 0
0 16

]
P t =

[
10 −6
−6 10

]
, so the quadratic

equation that describes the original conic rotated 45◦ is

[ xy ]

[
10 −6
−6 10

] [
x
y

]
− 16 = 0, that is 10x2 − 12xy + 10y2 − 16 = 0.

8. a. [x y]

[
1 0
0 −1

] [
x
y

]
− 1 = 0 b. The action of the matrix

P =

[
cos

(
−π

6

)
− sin

(
−π

6

)

sin
(
−π

6

)
cos

(
−π

6

)
]

=

[ √
3

2
1
2

− 1
2

√
3

2

]

on a vector is a clockwise rotation of 30◦. Then P

[
1 0
0 −1

]
P t =

[
1
2 −

√
3

2

−
√

3
2 − 1

2

]

, so the quadratic equation

that describes the original conic rotated 30◦ is

[x y]

[
1
2 −

√
3

2

−
√

3
2 − 1

2

] [
x
y

]
− 1 = 0, that is

1

2
x2 −

√
3xy −

1

2
y2 − 1 = 0.

9. a. 7x2 + 6
√

3xy + 13y2 − 16 = 0 b. 7(x − 3)2 + 6
√

3(x − 3)(y − 2) + 13(y − 2)2 − 16 = 0

10. a. 3
4x2+

√
3

2 xy+ 1
4y2+ 1

2x−
√

3
2 y = 0 b. 3

4 (x−2)2+
√

3
2 (x−2)(y−1)y+ 1

4 (y−1)2+ 1
2 (x−2)+

√
3

2 (y−1) = 0

Exercise Set 6.8

1. The singular values of the matrix are σ1 =
√

λ1, σ2 =
√

λ2, where λ1 and λ2 are the eigenvalues of AtA.

Then AtA =

[
−2 1
−2 1

] [
−2 −2

1 1

]
=

[
5 5
5 5

]
, so σ1 =

√
10 and σ2 = 0.

2. The singular values of the matrix are σ1 =
√

λ1, σ2 =
√

λ2, where λ1 and λ2 are the eigenvalues of AtA.

Then AtA =

[
−1 1
−2 −2

] [
−1 −2

1 −2

]
=

[
2 0
0 8

]
, so σ1 = 2

√
2 and σ2 =

√
2.
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170 Chapter 6 Inner Product Spaces

6. a. Since v = c1v1 + · · · + cnvn and B is orthonormal so ⟨v,vi⟩ = ci, then

⎡

⎢⎢⎢
⎣

c1

c2
...

cn

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

⟨v,v1⟩
⟨v,v2⟩

...
⟨v,vn⟩

⎤

⎥⎥⎥
⎦

.

b. projvi
v =

⟨v,vi⟩
⟨vi,vi⟩

vi = ⟨v,vi⟩vi = civi c. The coordinates are given by c1 = ⟨v,v1⟩ = 1, c2 = ⟨v,v2⟩ =

2√
6
, and c3 = ⟨v,v3⟩ = 1√

6

(
1
2 + 2√

3

)
.

7. Let B = {v1,v2, . . . ,vn} be an orthonormal basis and [v]B =

⎡

⎢⎢⎢
⎣

v1

v2
...
v3

⎤

⎥⎥⎥
⎦

. Then there are scalars c1, . . . , cn

such that v = c1v1 + c2v2 + · · ·+ cnvn. Using the properties of an inner product and the fact that the vectors
are orthonormal,

∥ v ∥ =
√
⟨v,v⟩ =

√
v · v =

√
⟨c1v1 + c2v2 + · · · + cnvn, c1v1 + c2v2 + · · · + cnvn⟩

=
√
⟨c1v1, c1v1⟩ + · · · + ⟨cnvn, cnvn⟩ =

√
c2
1 ⟨v1,v1⟩ + · · · + c2

n ⟨vn,vn⟩

=
√

c2
1 + · · · + c2

n.

If the basis is orthogonal, then ∥ v ∥=
√

c2
1 ⟨v1,v1⟩ + · · · + c2

n ⟨vn,vn⟩.
8. Let v = c1v1 + · · · + cmvm. Consider

0 ≤

∣∣∣∣∣

∣∣∣∣∣
v −

m∑

i=1

⟨v,vi⟩vi

∣∣∣∣∣

∣∣∣∣∣

2

=

〈

v −
m∑

i=1

⟨v,vi⟩vi,v −
m∑

i=1

⟨v,vi⟩vi

〉

= ⟨v,v⟩ − 2

〈

v,
m∑

i=1

⟨v,vi⟩vi

〉

+

〈
m∑

i=1

⟨v,vi⟩vi,
m∑

i=1

⟨v,vi⟩vi

〉

= ||v||2 − 2
m∑

i=1

⟨v,vi⟩2 +
m∑

i=1

⟨v,vi⟩2

= ||v||2 −
m∑

i=1

⟨v,vi⟩2 ,

so

||v||2 ≥
m∑

i=1

⟨v,vi⟩2 .

9. a. Since A =

⎡

⎢⎢
⎣

1 0 −1
1 −1 2
1 0 1
1 −1 2

⎤

⎥⎥
⎦ −→

⎡

⎢⎢
⎣

1 0 0
0 1 0
0 0 1
0 0 0

⎤

⎥⎥
⎦ , the vectors v1 =

⎡

⎢⎢
⎣

1
1
1
1

⎤

⎥⎥
⎦ ,v2 =

⎡

⎢⎢
⎣

0
−1
0
−1

⎤

⎥⎥
⎦ , and v3 =

⎡

⎢⎢
⎣

−1
2
1
2

⎤

⎥⎥
⎦ are linearly independent, so B = {v1,v2,v3} is a basis for col(A).

b. An orthogonal basis is B1 =

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢
⎣

1
1
1
1

⎤

⎥⎥
⎦ ,

⎡

⎢⎢
⎣

1/2
−1/2
1/2
−1/2

⎤

⎥⎥
⎦ ,

⎡

⎢⎢
⎣

−1
0
1
0

⎤

⎥⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭
.
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27. Let x ∈ (Ac)c. Then x is in the complement of Ac, that is, x ∈ A, so (Ac)c ⊆ A. If x ∈ A, then x is not
in Ac, that is, x ∈ (Ac)c, so A ⊆ (Ac)c. Therefore, A = (Ac)c.

28. Since an element of the universal set is either in the set A or in the complement Ac, then the universal
set is A ∪ Ac.
29. Let x ∈ A ∩ B. Then x ∈ A and x ∈ B, so x ∈ B and x ∈ A. Hence x ∈ B ∩ A. Similarly, we can show
that if x ∈ B ∩ A, then x ∈ A ∩ B.

30. An element x ∈ A ∪ B if and only if

x ∈ A or x ∈ B ⇔ x ∈ B or x ∈ A ⇔ x ∈ B ∪ A

and hence, A ∪ B = B ∪ A.

31. Let x ∈ (A ∩ B) ∩ C. Then (x ∈ A and x ∈ B) and x ∈ C. So x ∈ A and (x ∈ B and x ∈ C), and hence,
(A ∩ B) ∩ C ⊆ A ∩ (B ∩ C). Similarly, we can show that A ∩ (B ∩ C) ⊆ (A ∩ B) ∩ C.

32. An element x ∈ (A ∪ B) ∪ C if and only if

(x ∈ A or x ∈ B) or x ∈ C ⇔ x ∈ A or (x ∈ B or x ∈ C) ⇔ x ∈ A ∪ (B ∪ C)

and hence, (A ∪ B) ∪ C = (A ∪ (B ∪ C).

33. Let x ∈ A ∪ (B ∩ C). Then x ∈ A or x ∈ (B ∩ C), so x ∈ A or (x ∈ B and x ∈ C). Hence, (x ∈ A or x ∈
B) and (x ∈ A or x ∈ C). Therefore, x ∈ (A∪B)∩ (A∪C), so we have that A∪ (B ∩C) ⊆ (A∪B)∩ (A∪C).
Similarly, we can show that (A ∪ B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C).

34. Suppose x ∈ A\(B ∩ C). Then (x ∈ A) and x /∈ B ∩ C, so (x ∈ A) and (x /∈ B or x /∈ C) and
hence, x ∈ (A\B) or x ∈ (A\C). Therefore, A\(B ∩ C) ⊆ (A\B) ∪ (A\C). Similarly, we can show that
(A\B) ∪ (A\C) ⊆ A\(B ∩ C).

35. Let x ∈ A\B. Then (x ∈ A) and x /∈ B, so (x ∈ A) and x ∈ Bc. Hence, A\B ⊆ A ∩ Bc. Similarly, if
x ∈ A ∩ Bc, then (x ∈ A) and (x /∈ B), so x ∈ A\B. Hence A ∩ Bc ⊆ A\B.

36. We have that (A ∪ B) ∩ Ac = (A ∩ Ac) ∪ (B ∩ Ac) = φ ∪ (B ∩ Ac) = B\A.

37. Let x ∈ (A ∪ B)\(A ∩ B). Then (x ∈ A or x ∈ B) and (x /∈ (A ∩ B)), that is,
(x ∈ A or x ∈ B) and (x /∈ A or x /∈ B)). Since an element can not be both in a set and not in a set, we have
that (x ∈ A and x /∈ B) or (x ∈ B and x /∈ A), so (A∪B)\(A∩B) ⊆ (A\B)∪ (B\A). Similarly, we can show
that (A\B) ∪ (B\A) ⊆ (A ∪ B)\(A ∩ B).

38. We have that A\(A\B) = A\(A ∩ Bc) = (A\A) ∪ (A\Bc) = φ ∪ (A ∩ B) = A ∩ B.

39. Let (x, y) ∈ A× (B ∩C). Then x ∈ A and (y ∈ B and y ∈ C). So (x, y) ∈ A×B and (x, y) ∈ A×C, and
hence, (x, y) ∈ (A×B)× (A×C). Therefore, A× (B∩C) ⊆ (A×B)× (A×C). Similarly, (A×B)× (A×C) ⊆
A × (B ∩ C).

40. We have that

(A\B) ∪ (B\A) = (A ∩ Bc) ∪ (B ∩ Ac) = [(A ∩ Bc) ∪ B] ∩ [(A ∩ Bc) ∪ Ac]

= [(A ∪ B) ∩ (Bc ∪ B)] ∩ [(A ∪ Ac) ∩ (Bc ∪ Ac)]

= (A ∪ B) ∩ (Bc ∪ Ac) = [(A ∪ B) ∩ Bc] ∪ [(A ∪ B) ∩ Ac]

= [(A ∩ Bc) ∪ (B ∩ Bc)] ∪ [(A ∩ Ac) ∪ (B ∩ Ac)]

= (A\B) ∪ (B\A).

Exercise Set A.2

1. Since for each first coordinate there is a unique
second coordinate, then f is a function.

2. Since f(1) = −2 = f(4), then f is not one-to-
one.
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12. Notice that consecutive terms in the sum always differ by 4. Then

1 + 5 + 9 + · · · + (4n − 3) = 1 + (1 + 4) + (1 + 2 · 4) + · · · + (1 + (n − 1) · 4)

= n + 4(1 + 2 + 3 + · · · + (n − 1))

= n + 4

(
(n − 1)n

2

)
= n + 2(n − 1)n = 2n2 − n.

13. The base case n = 5 holds since 32 = 25 > 25 = 52. The inductive hypothesis is 2n > n2 holds for the
natural number n. Consider 2n+1 = 2(2n), so that by the inductive hypothesis 2n+1 = 2(2n) > 2n2. But since
2n2 − (n + 1)2 = n2 − 2n − 1 = (n − 1)2 − 2 > 0, for all n ≥ 5, we have 2n+1 > (n + 1)2.

14.

• Base case: n = 3 : 32 > 2(3) + 1

• Inductive hypothesis: Assume n2 > 2n + 1.

Using the inductive hypothesis (n+1)2 = n2+2n+1 > (2n+1)+(2n+1) = 4n+2 > 2n+3 = 2(n+1)+1

15. The base case n = 1 holds since 12 + 1 = 2, which is divisible by 2. The inductive hypothesis is n2 + n is
divisible by 2. Consider (n + 1)2 + (n + 1) = n2 + n + 2n + 2. By the inductive hypothesis, n2 + n is divisible
by 2, so since both terms on the right are divisible by 2, then (n+1)2 +(n+1) is divisible by 2. Alternatively,
observe that n2 + n = n(n + 1), which is the product of consecutive integers and is therefore even.

16.

• Base case: n = 1 : Since (x − y) = 1 · (x − y), then x − y is divisible by x − y.

• Inductive hypothesis: Assume xn − yn is divisible by x − y.

Consider

xn+1 − yn+1 = x · xn − y · yn = x · xn − y · xn + y · xn − y · yn

= xn(x − y) + y(xn − yn).

Since x − y divides both terms on the right, then x − y divides xn+1 − yn+1.

17. For the base case n = 1, we have that the left hand side of the summation is 1 and the right hand side
is r−1

r−1 = 1, so the base case holds. For the inductive hypothesis assume the summation formula holds for the
natural number n. Next consider

1 + r + r2 + · · · + rn−1 + rn =
rn − 1

r − 1
+ rn =

rn − 1 + rn(r − 1)

r − 1
=

rn+1 − 1

r − 1
.

Hence, the summation formula holds for all natural numbers n.

18. a., b.
n fn f1 + f2 + · · · + fn

1 1 1
2 1 2
3 2 4
4 3 7
5 5 12
6 8 20
7 13 33

The pattern suggests that f1 + f2 + · · · + fn = fn+2 − 1.
c.

• Base case: n = 1 : f1 = f3 − 1
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