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1.2 Matrices and Elementary Row Operations 9

31. To avoid the introduction of fractions we interchange rows one and three. The remaining operations are
used to change all pivots to ones and eliminate nonzero entries above and below them.

3 3 1 -1 -1 2 -1 -1 2
3 -1 0 Rl <—>R3 3 -1 1 3R1+R2—>R2 0 —4 6 3R1+R3—>R3
-1 -1 2 3 3 1 3 3 1
-1 -1 2 1 -1 -1 2 -1 -1 2
0 —4 6 ?Rg — R3 0 —4 6 (—6)R3 + Ry — Ry 0 —4 0| 2R3+ Ry — Ry
0 o 7| ——— 0 0 1 0 0 1
-1 -1 0] 1 -1 0] -1.0 0 1 00
0 -4 0 _ZRQ_)R2 0 1 0 {Ry+R— Ry 0 1 0f{(-1)Ri—R; {0 1 0
0 0 1 | 0 0 1 | 0 0 1 0 0 1
[0 2 1 1 0 0
32. The matrix | 1 —3 —3 |reducesto| 0 1 0
—_
|1 2 -3 |0 0 1
33. The matrix in reduced row echelon form is  34. The %1atrix in reduced row echelon form is
1 0 -1 1 0 =
8
01 0 |° 10 1 —3 }
35. The matrix in reduced row echelon form is  36. The matrix in reduced row ech form is
1 0 0 -2 1 0 0 2
010 —1/[. 010 ¢|.
00 1 0 _00136‘0

D

37. The augmented matrix for the linear systeﬁlart@

oot 9T 6
38. ?e€ matnx@ a stén

_3 ! reduces to L _%
4 2 o —— 0 1| 2 |
The unique solution to the linear system isx = —%, Y= %
39. The augmented matrix for the linear system and the reduced row echelon form are

?

o

3 -3 0] 3 1 0 01
4 -1 =-3| 3 — | 0 1 010
-2 -2 0 | -2 00 13
The unique solution for the linear system is x =1,y =0,z = %
40. The augmented matrix
2 0 —4|1 10 o0]32
4 3 —210 {reducesto| 0 1 0| —1
e
2 0 2|2 00 1|34
The unique solution for the linear system is x = %,y: —1,z=41.

41. The augmented matrix for the linear system and the reduced row echelon form are

1 2 111 10 110
2 3 2|0f— 101 010
1 1 12 0 0 0]1
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} if and only b+ 2 = 6,3a = 12, and ab = 16. That is,a =b=4

]andB_{e f}Since
g

. -5
will equal [ 12 1

QU OO

a
32.LetA_{c 3

{ bg—cf (af+bh— (be+ fd)
(ce +dg) — (ag + ch) cf —bg

then the sum of the terms on the diagonal is (bg — c¢f) + (¢f — bg) = 0.

33. Several powers of the matrix A are given by

AB — BA =

1 00 1 0 0 1 00 1 0 O
A2=101 0, A42=|0 -1 0],4*=]0 1 0|,andA4’=]0 -1 0
0 0 1 0 0 1 0 0 1 0 0 1
100
We can see that if n is even, then A™ is the identity matrix, so in particular A2 = | 0 1 0 | . Notice also
0 0 1
1 0 0
that, if n is odd, then A = | 0 —1 0
0 0 1

34. Since (A + B)(A — B) = A2 — AB + BA — B2, then (A + B)(A — B)

35. We can first rewrite the expression A2B as A°B = AAB. Slnce AB = BC‘@ ‘k‘) AAB = ABA =
BAA = BA2.

36. a. Since AB = BA and AC CA, then ( ) and hence BC and A
commute. b. Let A = [ , SO tha{;ﬁ @Kth every
that do not commute

pre \© ? .
0
37. Multiplication of A times the vector x = | . | gives the first column vector of the matrix A. Then

atrix. Then select any two matrices

0

0
1

Ax = 0 forces the first column vector of A to be the zero vector. Then let x = . and so on, to show
0

that each column vector of A is the zero vector. Hence, A is the zero matrix.

1—n -n 1—-m -m
38.LetAn—[ n 1+n]andAm—[ m 1_'_m].Then
AA — lI-n)(1-m)—nm (Q-n)(-m)—Q+m)n | | 1—(m+n) —(m+mn) 4
T p(l=m)+m(l+n)  —mn+Q+n)(1+m) | m+n 1+ (m+4n) | T

39.LetA—{i 2],sothatAt_[b d} Then

AAt— | @ b a c| [ a*+b* ac+bd] [0 0
Tl c d b d| | ac+bd A+d> | |0 0
if and only if a?+b? = 0, +d? = 0, and ac+bd = 0. The only solution to these equationsisa =b =c=d = 0,
so the only matrix that satisfies AA* = 0 is the 2 x 2 zero matrix.



1.4 The Inverse of a Matriz 17

7. Since the matrix A is row equivalent to the 8. Since the matrix A is not row equivalent to

1 -1 0 the identity matrix, then A is not invertible.
matrix | 0 0 1 |, the matrix A can not be
0 0 O
reduced to the identity and hence is not invertible.
/3 -1 -2 1/2 1 -3 3 0
0 1 2 -1 0o 1 -1 1/2
-1 _ -1 _
9. A7 = 0 0o -1 1/2 10. A7 = 0 0 1/2 1/2
0 0o 0 -1/2 0 O 0 1/2
3 0 0 O
-6 3 0 O
-1 _ 1
oAt =3 12.
11 1 0 0 0
1 1 0
AT e 12 12 0
1 1 0 1/2
13. The matrix A is not invertible. 14. The matrix A is not invertible.
0 0 -1 0
1 1 -1 -2 1 . . . .
15. A~ = 1 —2 1 1 16. The matrix A is not invertible. K
0 -1 -1 1

.
\e,.C .
17. Performing the operations, we have that AB+A = 1653 B+1)and AB+B = 5| =
(A+ DB O

18. Since the distributive propﬁ‘v@ atrix multlp tl&%&ltlon we have that (A+1)(A+1I) =

A2+ A+ A+T1=A%

?fé\’ @]w qu and —2A = { i :;L},thenA2—2A+5I_0_ b.

Since ( —2) =5, the mverse ex1sts and A-! = =z [ ; 1
c. It A2-2A+451 = 0, then A2—2A = 51, s0 that A (1(2] — A)) = 2
Hence A™! = £(21 — A).

20. Applying the operations (—3)R1 + Ry — Ry and (—1)R; + R3 — Rj3 gives

1 X0 1 A 0
3 2 0 |{reducesto| 0 2—3X 0 |.Soif A= %, then the matrix can not be reduced to the identity
e
1 2 1 1 2 1
and hence, will not be invertible.
1 A 0
21. The matrix is row equivalent to | 0 3—X 1 | . If A = —2, then the second and third rows are
0 1—-2x 1
identical, so the matrix can not be row reduced to the identity and hence, is not invertible.
1 2 1
22. Since the matrix is row equivalent to | 0 A —4 —1 [, if A = 2, then the matrix can not be row
0 4—-2Xx 0

reduced to the identity matrix and hence, is not invertible.
23. a. If A # 1, then the matrix A is invertible.

2
—1 A—

T —

1
-
—_
>
| >
_

‘)—‘
‘)—‘
‘)—‘

b. When A # 1 the inverse matrix is A~! =

>
|
o>

>
Lol

-
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100 2 1 -1
27. Using the LU factorization A=LU=| 1 1 0 0 1 -1 |, we have that
111 00 3
i 10 1 0 0 1 -1 0
At=Uu"'L' =10 1 % -1 1 0|=]|-1 2 %
0 0 3 0 -1 1 0 -3 3
28.
1 0 0][-32 1]\ [-L2 —17[10 0
At =(LU) = -1 1 0 0 1 2 = 0 1 -2 110
1 -1 1 0 01 0 0 1 01 1
1 1
3 —3 1
=1 -1 -2
0o 1 1
29. Suppose

2012502 4)

This gives the system of equations ad = 0,ae = 1,bd = 1,be + ¢f = 0. The first two e ns are satisfied
only when a # 0 and d = 0. But this incompatible with the third equation. \3

30. Since A is row equivalent to B there are elementary matrices thgo .E1 A and since B
is row equivalent to C' there are elementary matrices such t ‘E T hen C D,...D\B =
D, ...D\E,, ... E1A and hence, A is row equival

31. If A is invertible, there are elemen ﬁ .. t I = Ej ---E1A. Similarly, there
are elementary matrices D, . Qg@ thal @ BT ng ---D1B, so A is row
equivalent to B -‘

-
32. a. Sl \N the dia, nt 1€ El all nonzero. b. The determinant of A is the product
of t?ﬂﬁ ntrles of da@\ det(A) = l11 -+ Lpnuar - Upn. c¢. Since L is lower triangular
and \nvettible it is row equifale

e 1dent1ty matrix and can be reduced to I using only replacement
operations.

Exercise Set 1.8

1. We need to find positive whole numbers x1, 2, 3, and x4 such that x1Al3 + £2CuO — x3A1,03 + 24Cu
is balanced. That is, we need to solve the linear system

35[:1 = 2$3 1
rs = 3wz, which has infinitely many solutions given by z; = 5172, T3 = 53:2, T4 = x2,x2 € R.
Z2 = T4

A particular solution that balances the equation is given by x1 = 2,29 = 9,23 = 3,24 = 9.
2. To balance the equation z1ls + x9NasS203 — xz3Nal + £4NasS,0g, we solve the linear system
25[:1 = I3

2x9 = 1x3+ 2z . .

2 3 4 , so that 1 = x4, 10 = 224,23 = 224,24 € R. For a particular solution that balances
209 = 4dxy
3{E2 = 6:174

the equation, let x4 =1, so 1 = 1,292 = 2, and x3 = 2.
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99

16. T

19. T

22. F. At least one is a linear
combination of the others.

25. T

28. F. For example, the column
vectors of any 3 X 4 matrix are
linearly dependent.

31. T

17. T

20. T

23. F. The determinant of the
matrix will be zero since the col-
umn vectors are linearly depen-
dent.

26. F. An n x n matrix is in-
vertible if and only if the column
vectors are linearly independent.

29. T

32. F. The set of coordi-
nate vectors {e1,ez, ez} is lin-
early independent, but the set
{e1,e2,e3,e1 + €2+ ez} is lin-
early dependent.

18. F. Since the column vec-
tors are linearly independent,
det(A) #0

21. F. If the vector vg is a lin-
ear combination of vi; and va,
then the vectors will be linearly
dependent.

24. F. The third vector is a
combination of the other two and
hence, the three together are lin-
early dependent.

27. T

30. F. The vector can be a linear
combination of the linearly inde-
pendent vectors vy, vs and vs.

33. T
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—4

e Two linearly dependent vectors can not span R%. Let S = span{ { ? } , [ _9

]}.vaininS, then

there are scalars ¢; and co such that

real3)en[ 3] ol on(ol 1] ]

and hence, every vector in the span of S is a linear combination of only one vector.

e A linearly dependent set of vectors can span a vector space. For example, let S = { { (1) } , [ (1) ] , [ g } } .

Since the coordinate vectors are in S, then span(S) = R2, but the vectors are linearly dependent since
U1

=le V]

In general, to determine whether or not a vector v = . is in spanf{uy, ..., ux}, start with the vector

Un
equation
ciug +cpug + -+ cpuk =V,

and then solve the resulting linear system. These ideas apply to all vector spaces not gugt the Euclidean
spaces. For example, if S = {A € Mayxao| A is 1nvert1ble} then S is not a su V;vector space of

all 2 x 2 matrices. For example, the matrices R vertlble, so are in S, but
1 0 1 0 2 0 ?‘ 3 —11. .
[ 0 -1 ] + [ 0 1 } = [ 0 0 } , which is 0 i l@ termine whether of not [ 1 1 ] is in

et o i [ ) m e h%Egum
p(@\!o JN@[aQE [6’(3’ S R

The resulting linear system is ¢y — co = 2,2¢1 = —1,¢c0 = 1,¢1 + c2 = 1, is inconsistent and hence, the matrix
is not in the span of the other two matrices.

] Solutions to Exercises

0

= is in
Y2 | { Y1+ cy2 }

1. Let [ 0 } and [ 0 } be two vectors in S and ¢ a scalar. Then [ 0 } —l—c[
Y1 Y2 Y1

S, so S is a subspace of R?.

1 3 2
9 ,v—{l ],thenu—l—v—[_l ¢ S.

2. The set S is not a subspace of R2. If u = {

],thenu—i—v:[; ¢ S.

1 12 32 .
O},v_[ 0 },thenu—l—v—[ 0 } ¢ S since

w |
—_

4. The set S is not a subspace of R%. If u =

3. The set S is not a subspace of R%. If u = [ _2 ] ,V = [
(3/2)>+0%2=9/4> 1.

5. The set S is not a subspace of R2. If u = {

o o

andc—(),thencv—[ ]¢S

. . T Y . T +cy
6. The set S is a subspace since [ 3 ] —i—c[ } = [ 3(2 + cy) } e s.



3.3 Basis and Dimension 75

2 0 4
B= 31,121,160 . Observe that span(S) = R3.
0 2 4

30. The vectors can not be a basis since a set of four vectors in R? is linearly dependent. To trim the set
down to a basis for the span row reduce the matrix with column vectors the vectors in S. This gives

2 1 0 2 2 1 0 2
2 —1 2 3 |reducesto| 0 —2 2 1
e
0 0 21 0 0 21

A basis for the span consists of the column vectors in the original matrix corresponding to the pivot columns
of the row echelon matrix. So a basis for the span of S is given by

2 1 0
B= 2 {,1 =1 {,12 . Observe that span(S) = R3.
0 0 2

31. Form the 3 x 5 matrix with first two column vectors the vectors in S and then augment the identity
matrix. Reducing this matrix, we have that

2 1 1 00 2 1 1 0 0
-1 0 0 1 O |reducesto|{ O 1 1 2 O
3 2 0 0 1 00 -2 -—

A basis for R? consists of the column vectors in the original matrix correspondin t%columns of the
row echelon matrix. So a basis for R? containing S is B i &?

32. Form the 3 x 5 matrix Wlth ﬁrst two colN@Xvs e

ve in S and then augment the identity
matrix. Reducing this matrlx

T 0 0 Op- 1 0
P (e\, e\l[\l a@goT( %ces to g 1

A basis for R? consists of the column vectors in the original matrix corresponding to the pivot columns of the

= =
— o O

-2

-1 1 1
row echelon matrix. So a basis for R? containing S is B = 1 , 011,10
3 1 0
33. A basis for R* containing S is 34. A basis for R4 _containing S is
1 3 1 0 [ -1 [ 1 1 1
-1 1 0 0 1 -3 -2 0
B= 2 [ 1 10| 1 B= 1 |17 =11’ -11]"]10
4 2 0 0 | -1 ] [ 2 3 0
35. A basis for R? containing S is 36. A basis for R? containing S is
-1 1 1 2 -1 1
B = 1 1 11,10 . B = 2 [, -11{,]0
3 1 0 -1 3 0

37. Let e;; denote the n x n matrix with a 1 in the row i, column i component and 0 in all other locations.
Then B = {ey; | 1 <1i < n} is a basis for the subspace of all n x n diagonal matrices.
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-1 1 -1 a
19. Since the equation c; [ 1 ] + c2 [ 0 ] + c3 [ 1 ] = [ b ] gives
1 1 0 c

-1 1 —-1]a 1 0 0] —-a—-b+c a —a—b+c
1 0 1 |]b]—1]10 10 a+b , we have that b = a+b .
1 1 0 ¢ 0 0 1|la+2b—c ¢clg a+2b—c
20. Since
1 0 0 -1 a 1 0 0 0 2a+b—c—2d a 20 +b—c—2d
0 -1 -1 0 b duces ¢ 01 00 —a—-bt+c+d th b | —a=b+c+d
1 1 -1 0 ¢ |80 010 a-c—d e B - a—c—d
0o -1 0 -1 d 0 001 a+b—c—2d d B a+b—c—2d
0O 1 0 1 2
2l.a. [J]P=|1 0 0 | b. Vg, =[I2| 2 |=|1
0 0 1 3 3
B | 1 -1 By 0 1 .
22. a. [I]Bl_[l O} b. [1]32 [_1 1] c. Since
1 -1 0O 1] |10 Bov—1 _ r171B1
11 1 3 1 5 4 *
B _ _ . _ . )
o amz=[ ) 3 ]w [2] <[3]]1] - ééehe[.g,
4 8
],-15] “'\NO 85
) \N (S Q3 of &
R R S B I

24. a. [v]p = [

cosf —sinf x | | xcosh —ysinf
sinf  cosf y | | xsinf+ycosh
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e If A is an m x n matrix, then T'(v) = Av is a linear transformation from R™ to R™.
o T(crvi +cava+ -+ cpvp) =T (ve) + 2T (v2) + -+ ey T(Vn)

The third property can be used to find the image of a vector when the action of a linear transformation is
known only on a specific set of vectors, for example on the vectors of a basis. For example, suppose that
T : R? — R3 is a linear transformation and

1 -1 1 1 0
T 1 = 2 ,T 0 =1|1],andT 1
1 0 1 1 1
1 1] 0
Then the image of an arbitrary input vector can be found since 11{,/07],(1 is a basis for R3.
1 1| 1
1
For example, let’s find the image of the vector | —2 | . The first step is to write the input vector in terms
0
of the basis vectors, so
1 [ 1] 1 0
-2 ==11{4+42;0;-11
0 1 1 1

Then use the linearity properties of 1" to obtain UK
1 1 1 [0 ] 1 0
T —2 =T\ - 1 +2 0 -1 1 : 0 -T
i 7 " 1 1
- \
3

Ie ‘utlons to EP@%Q

—_

g

1. Letu—[z1 } and v = v

! } be vectors in R? and ¢ a scalar. Since
2

V2

T(u—i—cv):T(- e D = [ U2t cv } = [ 12 } +c[ 2 } = T(u) + ¢T(v),

Uo + Ccv2 w1 + cup U1 U1

then T is a linear transformation.

2. Let u= [ Zl } and v = Zl } be vectors in R? and ¢ a scalar. Then
2 | V2
uy + cuy (u1 + cv1) + (u2 + cve)
T = T =
(u+ev) (|:U2+C'U2 ]) [(ul—i—cvl)—(uQ—i—cvg)—i—Q
and

B (ug + cvy) + (u2 + cvg)
T(u) +T'(v) = { (w1 j—cvl)l— (u2 j— cv2)2—|— 4 } '

é],VZ [ H,andc=1,thenT(u+v)= [ g } andT(u)—f—T(v):[

T is not a linear transformation.

For example, if u = i ] . Hence,
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is a linear transformation. The null space of T, denoted by N(T'), is the null space of the matrix, N(A) =
{x € R*| Ax = 0}. Since

T 1 3 0 T 1 3 0
T i) = 2 0 3 i) =T 2 + X2 0 + T3 3 s
x3 2 0 3 x3 2 | 0 3
the range of T, denoted by R(T') is the column space of A, col(A). Since
1 30 1 3 0]
2 0 3 |reducesto| 0 —6 3
e
2 0 3 0 0 0]
the homogeneous equation Ax = 0 has infinitely many solutions given by z; = —%xg,xg = %xg, and x3
—3/2
a free variable. So the null space is | ¢ 1/2 t € R 3, which is a line that passes through the origin
1
in three space. Also since the pivots in the reduced matrix are in columns one and two, a basis for the
1 3
range is 21,10 and hence, the range is a plane in three space. Notice that in this example,
2 0
3 = dim(R3) = dim(R(T)) + dim(N(T)). This is a fundamental theorem that if T : V — W is a linear
transformation defined on finite dimensional vector spaces, then
dim(V) = dim(R(T)) + dim(N (T)). u\(

.
If the mapping is given as a matrix product T'(v) = Av such th \e n matrix, then this result is

written as a

n= rzﬂ tY(A).

A number of useful statements _are 1isT of equij alMX— %rnlng n X n linear systems:
A is invertible <:>,A { solut ﬂ ev@

equivalen ) # 0 < the column vectors of A are linearly independent
P ( e & the colu@@ span R"™ < the column vectors of A are a basis for R"
< rank(A) 2n < R(A) =col(4) =R" & N(A) = {0} & row(4) =R"

< the number of pivot columns in the row echelon form of A is n.

0 has only the trivial solution

] Solutions to Exercises

1. Since T'(v) = [ 8 ] , v isin N(T). 2. Since T'(v) = [ 8 } , v isin N(T).
. -5 . . . 0 -
3. Since T'(v) = { 10 ] , v is not in N(T). 4. Since T'(v) = [ 0 } , v isin N(T).
5. Since p'(z) = 2z — 3 and p’(z) = 2, then 6. Since p'(x) =5 and p”(z) = 0, then T(p(x)) =
T(p(x)) = 2z, so p(zx) is not in N(T). 0, so p(x) is in N(T).
7. Since T(p(x)) = —2x, then p(z) is not in 8. Since T(p(x)) = 0, then p(x) is in N(T).
N(T).
1 0 2|1 10 2|1
9. Since | 2 1 3|3 |reducesto| 0 1 —1|1 | there are infinitely many vectors that are mapped
—_
1 -1 3]0 0 0 01O
1 —1 1 1
to | 3 | . For example, T' 2 = | 3 | and hence, | 3 | isin R(T).
0 1 0 0
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1 0 22 10 210
10. Since | 21 3|3 |reducesto| 0 1 -1 the linear system is inconsistent, so the vector
o
1 -1 3|4 0 0 0|1
2
3 | is not in R(T).
4
1 0 2]-1 10 210
11. Since | 2 1 3| 1 reducesto | 0 1 —1|0 |, the linear system is inconsistent, so the vector
o
1 -1 3|-2 0 0 0|1
-1
1 | is not in R(T).
-2
1 0 2|-2 10 2 |-2
12. Since | 2 1 3| —=5 |[reducesto| 0 1 —1| —1 | there are infinitely many vectors that are
o
1 -1 3]-1 00 010
-2 -2
mapped to | —5 | and hence, the vector | —5 | isin R(T)
1 -1
13. The matrix A is in R(T). 14. The matrix A is not in R(T).
15. The matrix A is not in R(T). 16. The matrix A is in R(T). K

17. A vector v = [ x ] is in the null space, if and only if 3z +y = \éy @@a‘c 18, N(T { [ 8 } } ’

Hence, the null space has dimension 0, so does not havefteg
18. A vector is in the null space i Nq %@t is « = y. Therefore, N(T) =
x

a € R a‘a&s is 1 g% ()f

x —|— 22
19. Elce 20 +y+ 3z 1 and only if x = —2z and y = z every vector in the null space has the
—y+3z
-2
form z . Hence, a basis for the null space is 1
z 1
-2 2 2 1 0 —1/2 1/2
20. Since | 3 5 1 [reducesto| O 1 1/2 | then N(T)=<¢| —1/2 t € R » and a basis for
0 2 1 0 0 0 1
1/2
the null space is -1/2
1
25+t _65
21. Since N(T) = s s,teR 3, a 22. A basis for the null space is 1
t
J 0
2 1
basis for the null space is 11,10
0 1
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Exercise Set 4.3

An isomorphism between vector spaces establishes a one-to-one correspondence between the vector spaces.
If T:V — W is a one-to-one and onto linear transformation, then 7' is called an isomorphism. A mapping
is one-to-one if and only if N(T') = {0} and is onto if and only if R(T) = W. If {vy,...,vn} is a basis for
Vand T : V — W is a linear transformation, then R(T) = span{T(v1),...,T(vn)}. If in addition, T is
one-to-one, then {T'(v1),...,T(vn)} is a basis for R(T). The main results of Section 4.3 are:

e If V is a vector space with dim(V') = n, then V is isomorphic to R™.
e If V and W are vector spaces of dimension n, then V and W are isomorphic.

For example, there is a correspondence between the very different vector spaces Ps and Msyo. To define the
isomorphism, start with the standard basis S = {1, x, 22, 23} for P3. Since every polynomial a+bx+cx?+dz® =
a(1) 4+ b(x) + c(x?) + d(z*) use the coordinate map

1

a+bx+ca? +di® = [a + bx + cx? + daP]s = followed by

i}ab
c d |’

QO o
QU O oL

so that the composition La(Li(a + bz + cz? + dz?)) = [ ac 2 } defines an 1somorphlswetween Ps and
Msxs.

C
B Solutions to Exercises Sa\e

e
Not
1. Since N(T \hthﬁf@g;\one 2OtSQtO O?@
@(ﬂ@\,\ﬁ &geon’}t‘oo 4. Since —2 :? :i reduces to (2) :Z2’> :g ,

0
then N(T) = 0 , so T is one-to-one.
0

aER , then T is

5. Let p(z) = az? + bx + ¢, so that p’(x) = 2ax + b. Then

T(p(x)) =2ax +b—az® —br —c= —ar* + (2a —b)x +(b—¢c) =0

if and only if @ = 0,2a —b = 0,b — ¢ = 0. That is, p(z) is in N(T) if and only if p(z) = 0. Hence, T is
one-to-one.

6. Let p(z) = ax?® + bx + ¢, so T(p(x)) = ax® + bx? + cx = 0 if and only if a = b = ¢ = 0. Therefore, N(T')
consists of only the zero polynomial and hence, T is one-to-one.

7. A vector [ “

3x — =a
b ] is in the range of T if the linear system { 4 has a solution. Since the linear system

r+y =b

is consistent for every vector [ “ } , T is onto R?. Notice the result also follows from det <[ 3 -1 ]) =4,

b 1 1
so the inverse exists.

1

8. Since [ -2 “ } reduces to[ -2 1
et ¢

0 0

a
%a—l—b

S

1 —1/2]9
only if a = —2b and hence, T is not onto.

} , then a vector [ } is in the range of T if and



4.3 Isomorphisms 99

1 -1 2
9. Since | 0 1 —1 | is row equivalent to  10. Since
0 0 2
the identity matrix, then the linear operator T' is 2 3 —1lja 23 -1 a
onto R3. —1 1 3 |b |reducesto| O 5 5 a+2b
1 4 2 |c 0 0 0 |—-a—-b+c

then a vector is in the range of T if and only if
—a — b+ ¢ =0 and hence, T is not onto.

11. Since T'(e1) = [ _31 ] and T'(ez) = { 0

] are two linear independent vectors in R?, they form a basis.
1

are two linear independent vectors in R?, they
form a basis.

12. Since T'(eg) = { 8 } , the set is not a basis. 13. Since T'(e1) = [ _33 } and T'(ez) = { :1 ]

-1 -1
14. Since T'(ez) = 2T'(e1), the set is not a basis.  15. Since T'(e1) = 0 |, T(e2) = 1,
0 0
2
and T'(eg) = | —1 | are three linear indepen-

5
dent vectors in R3, they form a bysi K

2 3 -1 4
16. Since | 2 6 3 | = 0, the set is linearly  17. S1nce Za el‘ = 4 the set is linearly
49 2 1 3/2

dependent and hence, is not a basis. N@e ndent an% , is a basis.Is a basis.

18. Since —1 )ﬁ -&EQt is hﬁi@%p t and hence, is a basis.
? (ﬁ =22 T(x = 20. Since T'(1) = 0, the set is not a basis.

1, are three hnearl ent polyno—
mlals the set is a basis.

21. a. Since det(A4) = det ([ B

; 0 ]) = —3 # 0, then the matrix A is invertible and hence, T is an
-3
2

-3
isomorphism. b. A7! = —1 { (1) } c. Let w= { Z } . To show that T—}(w) = A~'w, we will show

that A=1(T(w)) = w. That is,

A‘qu ) D - [ _2/;, _1/2} [ 3y ] N [ ﬂ

22. a. Since det(A) = det <[ :? i)

isomorphism. b. A~! :% _1 :g

that A=1(T'(w)) = w. That is,

(i) 2 =E )]

]) = 5 # 0, then the matrix A is invertible and hence, T is an

} c. Let w = [ gyc } . To show that T~}(w) = A~ 'w, we will show
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e The coordinates of any vector T'(v) can be found using the matrix product

1
e As an example, let v = | —2 |, then after applying the operator T' the coordinates relative to B’ is
—4
given by
1 /2 -1 1/2 1
T -2 =1 -1/2 1 1/2 -2
—4 B -1/2 0 -1/2 —4 B

Since B is the standard basis the coordinates of a vector are just the components, so

1 /2 -1 1/2 1 1/2
T|| -2 = -1/2 1 1/2 -2 | =] —9/2
—4 . -1/2 0 —1/2 —4 3/2

This vector is not T'(v), but the coordinates relative to the basis B’. Then

1 1 1 2
T(| -2 :% 1 —g 0 +g 1
—4 1 1 0 —7/2 \(

Other useful formulas that involve combinations of linear transfo @Qhe matrix representation
are:

o [SHTIE = [S|F +[T]F e ‘YQ{E\ @“? LS—%% " e[ Y= (T]p) "
[] Solutl\rﬁe\mxermses ’X‘O

1. aE Let B = {e1,e2} be ag basis. To find the matrix representation for A relative to B, the column
vectors are the coordinates of T'(e1) and T'(ez) relative to B. Recall the coordinates of a vector relative to

the standard basis are just the components of the vector. Hence, [T)p = [ [T(e1]s [T(e2]s ] = [ _? _1 } .
9

b. The direct computation is T’ [ ? } = [ 1

=[]

] and using part (a), the result is

2. a. [T|p = [ -Lo ] b. The direct computation is T[ _31 } = [ 515 } and using part (a), the result is

0 1
[ —1 -1 0[] -1 1]
r | 3 } o [ 0 1]] 3 ] o [ 3]
3. a. Let B = {ej,ez,e3} be the standard basis. Then [T|p = [[T(ei1]p [T(ez2]p [T(e2]p] =
-1 1 2 1 3
0 3 1 . b. The direct computation is T'| —2 | = —3 |, and using part (a) the result is
1 0 -1 3 -2
1 -1 1 2 1 3
T| -2 | = 0o 3 1 -2 | =] -3
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00 0 6 O —12
0 0 0 0 24 —48
31. Since [T]Jp=|0 0 0 0 0 | and [T(p(x)]s = 0 , then T'(p(z)) = p"'(z) = —12 — 48x.
00 0 0 0 0
00 0 0 0 0

1 0
32. Since B is the standard basis, then [T'(1)]p = [1]p = [O ] T (2)]p = [22]B = [2] and [T(2?)|p =
0 0
0 1 0 0
Bz%lp=1]0|,s0T]g=]0 2 0
3 0 0 3
(1) 8 8 01 00 1 0 0
33. [s]8 = D =00 2 0|, DESE =02 0=
0 10 00 0 3 0 0 3
0 0 1
1

34. The linear operator that reflects a vector through the line perpendicular to } , that is reflects across

1

theliney_—:zr,isgivenbyT{Z}—{:gyc],so

([, [31.)- 5 2 o W%

S
35 IfA_{a b] then the matri NQ Tes i 8 2
¢ d _‘ m i 0 d—a —c

c —b 0
36. Since Ié\:, \@ Mentity mapehe%‘O

01 0
115 = B’ gl =[[vilp [vo]p [vs]p] =] 1 0 0
0 0 1
a b
If [vl]p = | b |, then [v]gr = | a |. The matrix [T]5 can be obtained from the identity matrix by
c c
interchanging the first and second columns.
37.
(1 1 0 0 0
01 1 0 0
00 1 1 0
[Tls =[[T(v)]p [T(v2)lB - [T(Va) ] = [[VilB [Vi+V2] [Va-1+vn B ] = :
00 0 0 O 1
00 0 0 O 1
L0000 0

Exercise Set 4.5

If T:V — V is a linear operator the matrix representation of T relative to a basis B, denoted [T]p

o o

[y
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b. c. The matrix that will reverse the action of the oper-
Y ator T is the inverse of [T]g. That is,
10 _ 1/3 0
[T]Sl_ { /0 -9 }
NI /) VN
-10 T~ 10

4. a. The matrix representation relative to the standard basis S' is the product of the matrix representations
for the three separate operators. That is,

ms=o T 70 V)] 0 1)

c. The matrix that will reverse the action of the oper-
ator T is the inverse of [T]g. That is,

e

o ¥

A0 -[ 7 ]

[ Ve V2
[T]S—|:_\/§/2 _\/5

st = T |

d. The transformation is a re-
flection through the y-axis.

V3/2 —1/2 0 101 V3/2 —1/2 /3/2-1)2
7.a. [Tls=1| 1/2 3/2 0 01 1 |=1| 1/2 +3/2 V3/2+1/2
0 0 1 00 1 0 0 1
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9. Since T2 —T+1=0,T —T? = I. Then

(To(I-T)V)=T((I-T)(v)) =T(v-T(v) =T(v) - T*(v) = I(v) =

10. a. The point-slope equation of the line that passes through the points given by u = [ Zl ] and v = [ Zl ]
2 2

tul + (1 — t)l)l
t’LLQ + (1 — t)l)g

is y = 2= (v —w1) + u2. Now consider tu+ (1 —t)v =

] and show the components satisfy

the point-slope equation. That is,

U2 — U2 U2 — U2

t 1—%t)v — =
v1—u1(u1+( Jor — ) + vl — Up

= (1)2 —UQ)(l —t) + uo = (1 —t)vg —’U,Q(l —t) =+ U9
:t’U,Q—I—(l—t)UQ.

(t(ur —v1) + ((v1 — u1)) + uz

b. Since T(tu+ (1 —t)v) = tT(u) + (1 — t)T(v), then the image of a line segment is another line segment.

c. Let wy and wg be two vectors in T'(S). Since T is one-to-one and onto there are unique vectors vy and va
in S such that T'(v1) = wq and T'(v2) = wa. Since S is a convex set for 0 < ¢ < 1, we have tvy 4 (1 —¢)va is in
S and hence, T'(tv1+(1—t)va) isin S. But T(tvy+ (1 —t)ve) = tT(v1)+ (1 —t)T(ve) = tw1+ (1 —1t)wq, which
is in T'(S) and hence, T'(S) is a convex set.  d. Since T is one-to-one and onto the linear transformation is

an isomorphism. To find the image of S, let [ Z } be a vector in S and let T' [ v ] =1 %I, sothat u = 2z,

;I;d v =y. Then (5) +v? = 22 + y? = 1. Therefore, T'( esa{b @91 ich is an ellipse in
Chapter Test Chapter 4( 0m NO‘ \ )‘%6
\e\N \ %3_9 O s 7
P‘e +T@ag Tx+y)=2c+2y—1

since the second component of but
the sum will contain a plus 4.

T(x)+T(y) =2+ 2y — 2.

4. T 5 T 6. F. Since

7. F. Since 8. F. If T is one-to-one, then the 9. T

ot set is linearly independent.
v {[1]] e

10. F. For example, T(1) =0 = 11. T 12. F. Since, for every k,
T(2). 1N [0

r([k])-15)
13. T 14. T 15. T

16. T 17. T 18. T
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5 Eigenvalues and Eigenvectors

Exercise Set 5.1

An eigenvalue of the n x n matrix A is a number A such that there is a nonzero vector v with Av = Av.
So if X and v are an eigenvalue—eigenvector pair, then the action on v is a scaling of the vector. Notice that
if v is an eigenvalue corresponding to the eigenvalue A, then

A(ev) = cAv = ¢(Av) = A(ev),

so A will have infinitely many eigenvectors corresponding to the eigenvalue \. Also recall that an eigenvalue
can be 0 (or a complex number), but eigenvectors are only nonzero vectors. An eigenspace is the set of all
eigenvectors corresponding to an eigenvalue A along with the zero vector, and is denoted by V) = {v € R™ |
Av = Av}. Adding the zero vector makes V) a subspace. The eigenspace can also be viewed as the null space
of A — A\I. To determine the eigenvalues of a matrix A we have:

A is an eigenvalue of A < det(A — AI) =0.

The last equation is the characteristic equation for A. As an immediate consequence, if A is a triangular

matrix, then the eigenvalues are the entries on the diagonal. To then find the corres ng eigenvectors,
for each eigenvalue A, the equation Av = Av is solved for v. An outline of t&@ca cAhplitations for the
-1 1 =2

matrix A = 1 -1 2 are: a\e
1 0 1 5
e To find the eigenvalues solve 6} om ﬁ%@g across row three, we have that

\t éh‘le? Y e

Then det(A — M) f and only if

- = —A%(14 \) =0, so the eigenvalues are \; = 0, Ay = 0.

e To find the eigenvectors corresponding to A; = 0 solve Av = 0. Since

-1 1 =2 -1 1 =2
1 -1 2 reduces to o 1 -1,
et ¢
10 1 0 0 0
—t
the eigenvectors are of the form t |, for any ¢t # 0. Similarly, the eigenvectors of Ao = —1 have the
t
—2t
from 2t | ,t#0
t
-1 -2
e The eigenspaces are Vo =< t | 1 teR3yand Vo =<t | 2 teR3
1 1

e Notice that there are only two linearly independent eigenvectors of A, the algebraic multiplicity of Ay = 0
is 2, the algebraic multiplicity of A = —1 is 1, and the geometric multiplicities are both 1. For a 3 x 3
matrix other possibilities are:



128 Chapter 5 FEigenvalues and Eigenvectors

Exercise Set 5.3

1. The strategy is to uncouple the system of differential equations. Writing the system in matrix form, we
have that

-1 1
y = Ay = [ 0 —9 ]y~
The next step is to diagonalize the matrix A. Since A is triangular the eigenvalues of A are the diagonal

] , respectively. So A = PDP™!,

entries —1 and —2, with corresponding eigenvectors { (1) } and { 1

0 1 0 1 0 -2

-1 0
0 -2

where P = [ -l } P71 = { L1 ] ,and D = { -1 0 } . The related uncoupled system is w’ =

—t
P lAPw = [ w. The general solution to the uncoupled system is w(t) = [ ¢ 0 6_29 } w(0).

—t

0 ,2(3 ] P~1y(0). That is,

Finally, the general solution to the original system is given by y(t) = P [ €

y1(t) = (y1(0) + y2(0))e " — ya2(0)e ™, ya(t) = y2(0)e ",

2. Let A = _1 (2) . Then the eigenvalues of A are 1 and —2 with corresponding eigenvectors 1 ,

and { ] , respectively. So A = PDP~! =

1 t . édgpnd hence, w'(
P lAPw = [ 60 6[20 } Thejl the general sﬁon t‘%@%@tem is w(t) = [ 0 -2t ] w(0)
and hence y(t) = ot m l
 £107 3y of

3. Using the same approaﬁs in Exercise (1), we let A = _;’ _515 } . The eigenvalues of A are 4 and —2

)+ 20200 + 5 (=31(0) + 12 (0))e .

. . . -1 1 .
with corresponding eigenvectors 1 and e respectively, so that

-1 1 4 0 -1 1
1 L _ .
A=3 [ 11 ] { 0 —9 } [ 11 ].So the general solution is given by y(¢) P[ 0 -2t }P y(0),
that is

1

1(0) = 5(10) — 12(0)e™ + 501(0) + 320D, a(t) = 5(~51(0) + y2(0)e™ + 3 (11 (0) + a(0))e

l\DI»—A

_1 _1 . Then the eigenvalues of A are 0 and 2 with corresponding eigenvectors 1 )

. _ 1 -1 0 0 1/2 1/2
— 1 _ ! _
} , respectively. So A = PDP~" = [ 1 1 ] { 0 2 ] [ “1/2 1/2 } and hence, w'(t) =

4. LetA—{

and[ 1
0 1 0

P 1APw = [ (1) _o¢ | - Then the general solution to the uncoupled system is w(t) = 0 o2t w(0) and

e
hence y(t) = P [ (1) 62(2 } P~1y(0), that is,

S 0100) — 12(0)e% 3o (1) = (01 (0) +12(0)) + 5(~5(0) + 2(0))e.

yi(t) = %(91(0) +2(0)) + 3 2
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b. The graphs of y(\) = A*> =3\ +k for different values c. The matrix will have three distinct real eigenvalues

of k are shown in the figure. when the graph of y(\) = A3 —3\+k crosses the z-axis
three time. That is, for
—2<k<2.
k 3
k= 2
k=

=3

e

6. Since B = P~' AP, we have that A = PBP~!. Suppose Bv = \v, so v is an eigenvector of B corresponding
to the eigenvalue A. Then
A(Pv) = PBP 'Pv = PBv = P(\v) = APv

and hence, Pv is an eigenvector of A corresponding to the eigenvalue .

1
1
7. a. Let v= . | . Then each component of the vector Av has the same value equal to the common row
1
A 1
A 1 \ h
sum A. That is, Av=| . | =X| . |, so \is an eigenvalue of A corres@@ 0 eigenvector v. b.

o cigena ﬁ
Since A and A? have the same eigenvalues, the t tv% olds if sum of each column of A is equal
to A.

8. a. Since T is a linear oper 280 {0 r every v in V, then T'(v) is in V so
V is 1nvar1ant b i im 1 the tor wo such that W = {awg | a € R}. Then
18 1nvar1ant ’}% o) there is some A such that wi; = Awg. Hence, wq is

0} are invariant subspaces of the linear operator 7. Slnce the
mat X 1€ resentatlon for latlve to the standard basis,

T(v):)\vc)T(v):[(l) _é]v=[(1) _H [Z;}@ulzwzo.

By part (b), the only invariant subspaces of T are R? and {0}.

9. a. Suppose w is in S(V),), so that w = S(v) for some eigenvector v of T' corresponding to Ag. Then
T(w)=T(S(v)) =S(T(v)) =S(Aov) = XAS(V) = Aow.

Hence, S(Vy,) C Vy,.

b. Let v be an eigenvector of T' corresponding to the eigenvalue \g. Since T has n distinct eigenvalues then
dim (V) = 1 with V), = span{v}. Now by part (a), T'(S(v)) = A\o(S(v)), so that S(v) is also an eigenvector
of T and in span{v}. Consequently, there exists a scalar uo such that S(v) = pov, so that v is also an
eigenvector of S.

c. Let B ={v1,va,...,vn} be a basis for V consisting of eigenvectors of T' and S. Thus there exist scalars
A1y, A2,y Ay and pq, pa, ..., iy such that T'(vy) = A;vi and S(vi) = pivy, for 1 < i < n. Now let v be a
vector in V. Since B is a basis for V' then there are scalars ¢y, co,...,c, such that v.=civy+cova+...+¢,vy.

Applying the operator ST to both sides of this equation we obtain
ST(v)=ST(c1v1 +cava + ...+ ¢,vn) = S(e1A1ve + c2Aava + ... + Ay Vi)
= 1AV + C2A2p2Va + .+ CpAnfinVn = C1p1 A1V + CofiaAaVa + ...+ Cufln AnVn
=T(c1p1v1 + coprova + ... + CppinVn) = TS(c1v1 + cava + ... + ¢pvn) = TS(v).
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] Solutions to Exercises

Lou-v=(0)1)+1)(-1)+(3)2) =5

u-(v+2w)=u-| 1 | =04+1-12=-11

5. || u =12 +52 =26

7. Divide each component of the vector by the

1
1 . .
norm of the vector, so that 756 [ 5 ] is a unit

vector in the direction of u.

2
10
g.ﬁ[l}

V22

N
o WA

11 [fu = /(=32 + (22 + 3% =
W §1O%

Rty

17. Since two vectors in R? are orthogonal if and

only if their dot product is zero, solving [ ?C’ ] .

[ _21 } =0, gives —c 4+ 6 = 0, that is, ¢ = 6.
19. The pairs of vectors with dot product equal-
ing 0 are vy Lvg, vilvy, vilvs, valvg, vy lvy,
and vz Lvs.

21. Since vz = —vq, the vectors vi and vz are
in opposite directions.

9, uv _ 0-146 _ 5
v-v  1+1+4 T 6
1 1
u-w _ 0419 _ _ 8
4. W = T =1 1
- -3

6. ||u—v||—\/[‘41]~[ﬂ_m

u-v
MalllvT —
tors are not orthogonal.

then the vec-

8. Since cosf = F\/E’

10. The vector w is orthogonal to u and v if and
only if wy + bwy = 0 and 2wy + we = 0, that is,
wyp = 0 = wo.

4
Since cosf = T # 0, then the vectors

are not orthogonal.

16. A vector w is orthogonal to both vectors
2wo + 3wz =0
—Ww; — W2 — 3’[1)3 =0
—12ws. So all vectors in

if and only if {_?””1 -

w1 = Jws, wo =

9
span —12 are orthogonal to the two vec-
1
tors.
-1 0
18. c : 2 =0+2c—2=0&c=1
2 -1

20. The vectors vo and vs are in the same direc-
tion.

22, [|vyl| = /5 +5+3=1
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nei e[

AAAAA

=V
y
A

3 5
25. w = 1} 26.w=1| 0

(SIS
[ —

.
preViisag

w

v

29. Let u be a vector in
span{uy,ug, - ,un}. Then there exist scalars ¢y, ¢, - , ¢, such that

u=cuy; +coug + - -+ cpup.
Using the distributive property of the dot product gives

v-u=v-(cqus +couz +...+cyun)
=ci(v-ug)+tea(voug)+ -+ ep(v-oup)
261(0)4—62(0)—'—"’0”(0):0

30. If u and w are in S and ¢ is a scalar, then
(utew) - v=u-v4+ew-v)=04+0=0

and hence, S is a subspace.
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19. An orthonormal basis for
span(W) is

— 1], =
VBl VB

21. An orthonormal basis for

span(W) is
-1 -2 1
I I N U AN I T
VLN I IRV it IRV
1 0 1

23. An orthonormal basis for
span(W) is

{x/ir, —3:17—!—2}.

25. An orthonormal basis for sp

’«0
(eN

et vbeavector in na' {ul,uz,...,
c1, C2,...,Cy such that v =cjuy +coug + - --

@*

uy } an orthonormal basis for V. Then there exist scalars
+ ¢pupn. Then

20. An orthonormal basis for
span(W) is

22. An orthonormal basis for

span(WV) is
1 2 -2
Vil =2 | VIS 1 | V30| -1
5 0 |7 15 1 {7 30 0
0 -1 5

24. An orthogonal basis for
span(W) is

5, 9 1

and an orthonormal basis is

{ 5&@“?@ }-

An o h 51 basis for span(W) is

VI[P =v-v=cl(uy -u)+ci(ug-ug)+ - +c2(upy-up).

Since B is orthonormal each vector in B has norm one, 1 = [|u;||?> = u; - u; and they are pairwise orthogonal,

so uy - uy =0, for ¢ # j. Hence,

V[P =cl+c3+-

:|V'U1|2+"'+|V'un|2.

28. To show the three statements are equivalent we will show that (a)=(b), (b)=-(c) and (c)=-(a).

e (a)=(b): Suppose that A=t = A’. Since AA* = I, then the row vectors are orthonormal. Since they
are orthogonal they are linearly independent and hence a basis for R™.

e (b)=(c): Suppose the row vectors of A are orthonormal. Then A*A = I and hence the column vectors

of A are orthonormal.

(c
Al —

) (a ) Suppose the column vectors are orthonormal. Then AA* = I and hence, A is invertible with
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x
The vector v = ‘Z is in W if and only if it is orthogonal to each of the three vectors that generate W, so
w
1
that t—w =0,y—w =0,z—w = 0, z € R. Hence, a basis for the orthogonal complement of W is 1
1
16. The two vectors that span W are linearly independent but are not orthogonal. Using the Gram-Schmidt
1 3/2
process an orthogonal basis is 0 , 1 . Then
-1 3/2
[ R I 1 3/2
-2 |- 0 -2 |- 1
_ 2 1 (1) N 3/2 3{ 21 ?
projy v = —= = = = —
1 1 1 3/2 3/2 3/2 11 13
0 . 0 1 . 1
| -1 ] | -1 ] 3/2 3/2
17. The two vectors that span W are linearly independent and orthogonal, so that an qrthogonal basis for
2 0 (\(

Wis B = 01, —1 . Then

0 0 Sa\e C

18. The two vectors that span W are linearly independent but not orthogonal. Using the Gram-Schmidt

3 2
process an orthogonal basis for W is B = —-11,| 14 . Then
1 8
5 7 [ 3] 5 2
-3 -1 -3 14
. 3 1 2 19 3 1 1 5
projy v = —¢ 3 == 3 = -1 [+ 5 5 14 11 -1 —1I 14 | =1 -3
1 8 1 8 1
-1 -1 14 14
1] L1 8 8

Observe that | —3 | is contained in the subspace W.
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LetV1—|:a

b } and let # be the angle that v; makes with the horizontal axis. Since a? + b? = 1, then vy is

a unit vector. Therefore a = cosf and b = sinf. Now let vo = { 2 } . Since ac + bd = 0 then vy and v are

orthogonal. There are two cases.

Case 1. ¢c=cosf + /2 = —sinf and d = sinf + 7/2 = cos b, so that A = CQSH sin 0
—sinf cosf
Case 2. c=cosf — /2 =sinf and d =sinf — /2 = — cosf, so that A = C(.)SH sin 0
sinf —cosf

cosf sin@
—sinf cosf

T(v) = cosf sinf x| | cos(—0) —sin(-0) x
V)T —sind cosf y | | sin(—=0)  cos(—6) y |’
which is a rotation of a vector by —6 radians. If det(A) = —1, then by part (b), T(v) = A’v with A’ =

CQS 0 sin 0 . Observe that
sinf —cos6

c. If det(A) = 1, then by part (b), T'(v) = Av with A = [ } Therefore

A — | cos 0 —sinf 1 0
| sinf  cos@ 0 -1 |-
Hence, in this case, T is a reflection through the z-axis followed by a rotation th M le 6.
28. Suppose A and B are orthogonally similar, so B = P*AP, wherg P_i 1s matrix. Since P is
orthogonal P! = P¢, \

a. First suppose A is symmetric, so A' = A. Then Bﬂ‘ﬁs
symmetric. Conversely7 suppose B is symmetri ince B gP P~ 'AP, then A= PBP~".

Then A' = (PBP~! (PBP?)t m&) =Aa ymmetric.

b. First suppose A is ortho 0 é T % P1A7IP = PIA'P = (P'AP)! =

Bt and hence, B *is W onversel hﬁ? B orthogonal S0 B L' = B! Since B = P'AP =
1AP Then A 1 = PB P71 = PB'P! = (P!BP)! = A® and hence, A

is oia g
ppose D = Pt AP, ‘?r@ls an orthogonal matrix, that is P~! = P*. Then

D' = (P'AP)! = P'A'P.

'P AtP P'AP = B and hence, B is

Since D is a diagonal matrix then D! = D, so we also have D = P'A'P and hence, P!AP = P'A'P. Then
P(P'AP)P! = P(P'A'P)P'. Since PP' = I, we have that A = A’ and hence, the matrix A is symmetric.
30. Suppose A1 exists and D = P'AP, where D is a diagonal matrix and P is orthogonal. Since D = P'AP =
P~1AP, then A = PDP~!'. Then A~! = (PDP71)71 = PD 'P ! so D7l = P 1A71P = P!A71P and
hence A~! is orthogonally diagonalizable.

vy

vy
3l.a. Ifv=| . |, thenviv=0f+...4+02.

Un

b. Consider the equation Av = A\v. Now take the transpose of both sides to obtain v’ A? = Av’. Since A4 is
skew symmetric this is equivalent to
vi(=A) = v

Now, right multiplication of both sides by v gives vi(—Av) = Av’v or equivalently, v!(—\v) = Avtv. Hence,
2\viv = 0, so that by part (a),

2A(vi+...+v2) =0, thatisA\=0orv=0.
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so that the equation is transformed to
(x)'Dx' +b'Px' 4+ f =0, thatis 20(z")?+10(y')* — V102’ +V10y — 12 = 0.

5. The transformed quadratic equation is 6. The transformed quadratic equation is
(ﬂc;)2 _ (y;)2 -1 W) _ =) _q

2 2

7. a. [z y] [ 3 12 ] [ 5 ] —16 =0 b. The action of the matrix

us : us

cosZT —sinZ
P_[siné cosé}_

4 4

on a vector is a counter clockwise rotation of 45°. Then P 10 } Pt = { _12 _18 } , so the quadratic

el
|
el

equation that describes the original conic rotated 45° is

[zy ] [ _12 _13 ] { ; ] — 16 =0, that is 1022 — 122y + 10y — 16 = 0.
AV
8. a. [z y [ (1) o } {Z } ~1=0 b. Theactionofthemat' \ _CO
’&e 5
(bm 03 ( d‘k&% 7]
e ! 1697,
?v@ D 09;1 30° is o ]P _

that Yescribes the or1g1nal om

0

[

3
2 ] , so the quadratic equation

l\7|aml)—‘

[N

% _73 z 1o \/_ 1,
[z y] 3 y —1=0, thatlsix — 3;Ey—§y —1=0.

9. a. Tr2 + 63y +13y> —16=0 b. 7(x —3)> +6V3(z —3)(y —2) + 13(y — 2)2 -~ 16 =0
10. a. %xz—k‘/?ga:y—l— Tyi+1 x—iy—() b. 3(z—2)%+ ‘/_( -2)(y—Dy+1(y—1)2+1(z—-2)+ ‘/g(y—l):O

Exercise Set 6.8

1. The singular values of the matrix are o1 = /A1, 02 = /A2, where A\; and Ay are the eigenvalues of A'A.

-2 1 -2 =2 5 5
ThenAtAz[_2 1}{ 1 1}:{5 5],50012\/Eand0220.

2. The singular values of the matrix are o1 = /A1, 02 = VA2, where A\; and Ay are the eigenvalues of A'A.

-1 1 -1 -2 2 0
tA _ _ _
ThenAA—{_2 _2}{ 1 _2}—[0 8},s001_2\/§and02_\/§.
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c1 (v,v1)
_ _ C2 (v,vz2)
6. a. Since v =c¢1vy + -+ + ¢,V and B is orthonormal so (v, v;) = ¢;, then . =
Cn <V, Vn>
. vy B . . o _ _ _
b. proj,. v = < >vi =(v,vi)vi = ¢Vv;i c. The coordinates are given by ¢; = (v, vy1) = 1,¢0 = (v, va) =
! Vi7 vl
%, and c3 = (v, v3) = % (% + \%)
U1
V2
7. Let B = {vy,Va,...,Vn} be an orthonormal basis and [v]p = .| . Then there are scalars ci,...,c,
U3

such that v = ¢yvy +cova + -+ -+ ¢, vy. Using the properties of an inner product and the fact that the vectors
are orthonormal,

[vII=vV{v,v)=Vv-v=v/(c1vi +cava+ -+ cpVn,c1V1 + cava + - + V)

= Vlavieva) b (envm enva) = /& (va,v1) + -+ & (Vi Vi)

_ 2 4 ... 2
=/c]+ +ci.

If the basis is orthogonal, then || v ||= \/c} (v1,v1) + + 2 (Vn, Vn).

8. Let v=—civy + -+ ¢, vm. Consider \e
(AN

e r@@
e '
P(e\, Pag|v||2—2; v.vi) +§<V,Vi>2

m

= VP =D (vow)?,

i=1

SO .
V][> > Z v, vi)?
1 0 -1 1 0 0 1 0
. 1 -1 2 0 1 0 1 —
9. a. Since A = 10 1 — 100 1l the vectors vi = 1]v2= 0 , and vg =
1 -1 2 0 0 0 1 —1
—1
% are linearly independent, so B = {v1,va,vs} is a basis for col(A).
2
1 1/2 -1
N ~1/2 0
b. An orthogonal basis is By = E 1/2 , 1
1 ~1/2 0
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27. Let x € (A°)¢. Then z is in the complement of A¢, that is, x € A, so (4A°)¢ C A. If z € A, then z is not
in A° that is, z € (A°)¢, so A C (A°)°. Therefore, A = (A°)°.

28. Since an element of the universal set is either in the set A or in the complement A¢, then the universal
set is AU A°.

29. Letz € ANB. Thenz € Aand z € B,sox € B and z € A. Hence z € BN A. Similarly, we can show
that if z € BN A, then z € AN B.

30. An element x € AU B if and only if
reAorxeBsreBorxeAsre BUA

and hence, AUB = BU A.

31. Let x € (ANB)NC. Then (r € Aand x € B) and x € C. So x € A and (x € B and z € (), and hence,
(ANB)NC C AN (BNC). Similarly, we can show that AN (BNC) C (AN B)NC.

32. An element 2 € (AU B) U C if and only if
(xeAdorzeB)orzeCsrxecAor(zreBorzelC)ere AU(BUC)

and hence, (AUB)UC = (AU (BUC).

33. Let r€ AU(BNC). Thenx € Aorxz e (BNC),soxe€ Aor (r € Bandx € (). Hence, (x € Aor x €
B) and (z € A or z € C). Therefore, x € (AUB)N(AUC), so we have that AU(BNC) C (AUB)N(AUC).
Similarly, we can show that (AUB)N(AUC) C AU (BNC). \ ;

34. Suppose z € A\(BNC). Then (r € A)andz ¢ BN C, so xe QM re ¢ C) and
hence, x € (A\B) or © € (A\C). Therefore, A\(BNC) C A\B ilarly, we can show that
(A\B) U (A\C) € A\(BN C). §

35. Let € A\B. Then (z € A) and z ¢ B a 6 BC nce, A\B C AN B¢. Similarly, if
x € AN B¢, then (x € A) and ( gé nce

36. We have that AUB ﬁ c!: B N = B\A
37 Letxe hen xEA an (AN B)), that is,

CX x ¢ A or :C an element can not be both in a set and not in a set, we have
that nd x ¢ B) x ¢ A so (AUB)\(ANB) C (A\B)U(B\A). Similarly, we can show
that (A\B) U (B\A4) C A B)

38. We have that A\(A\B) A\ (AN Bc = (A\A)U(A\B°)=¢U(ANB)=ANB.

39. Let (z,y) € Ax (BNC). Thenz € Aand (y € Band y € C). So (z,y) € Ax B and (z,y) € Ax C, and
hence, (x,y) € (Ax B) x (Ax C). Therefore, Ax (BNC) C (Ax B) x (Ax ). Similarly, (Ax B)x (AxC) C
Ax (BNQ).

40. We have that

(A\B)U (B\A) = (ANB)U(BNA°) =[(ANB)UB|N[(AN B°) U A
(AUB)N(B°UB)|N[(AUA°) N (BU A%)]
(
[

(
[
=(AUB)N(B°UA°) =[(AUB)N B U [(AU B) N A9
[
=

(AN B°) U (BN B U[(AN A°) U (BN A°)]
A\B) U (B\A).

Exercise Set A.2

1. Since for each first coordinate there is a unique 2. Since f(1) = —2 = f(4), then f is not one-to-
second coordinate, then f is a function. one.
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12. Notice that consecutive terms in the sum always differ by 4. Then

145494 4+M@An—3)=1+1+4)+1+2-4)+--+(1+(n—1)-4)
=n+4(1+243+---+(n—1))

_n+4<@> =n+2(n—1)n=2n*—n.

13. The base case n = 5 holds since 32 = 2° > 25 = 52, The inductive hypothesis is 2" > n? holds for the
natural number n. Consider 2"+! = 2(2"), so that by the inductive hypothesis 21 = 2(2") > 2n2. But since
2n? —(n+1)*=n*-2n—1=(n—1)> -2 >0, for all n > 5, we have 2" ™! > (n + 1)

14.
e Base case: n =3:32>2(3) +1

e Inductive hypothesis: Assume n? > 2n + 1.
Using the inductive hypothesis (n+1)? = n?+2n+1 > (2n+1)+(2n+1) = 4n+2 > 2n+3 = 2(n+1)+1

15. The base case n = 1 holds since 12 4+ 1 = 2, which is divisible by 2. The inductive hypothesis is n? + n is
divisible by 2. Consider (n+ 1)2+ (n + 1) = n? + n + 2n + 2. By the inductive hypothesis, n? +n is divisible
by 2, so since both terms on the right are divisible by 2, then (n+1)?+ (n+ 1) is divisible by 2. Alternatively,
observe that n? +n = n(n + 1), which is the product of consecutive integers and is therefpre even.

16.

e Base case: n=1:Since (x —y) =1-(z —y), then z —y is %\@bé ;9
e Inductive hypothesis: Assume z" — ﬁ@‘}@ 6

Consider l
o O g b F20
QHSG x — y divides @ n the right, then x — y divides 2! — ¢y +L,

17. For the base case n = 1, we have that the left hand side of the summation is 1 and the right hand side
is % =1, so the base case holds. For the inductive hypothesis assume the summation formula holds for the
natural number n. Next consider

rt—1 ot =14r"(r—1) -1
r—1 r—1 or—1

Ldr+ri+ " =

Hence, the summation formula holds for all natural numbers n.

18. a., b.
n|falfitfot-+fa
111 1
211 2
3| 2 4
41 3 7
5] 5 12
6| 8 20
7113 33

The pattern suggests that f1 + fo+ -+ + frn = foye — 1.
c.

e Basecase: n=1: f1 = f3—1



