1b-EXPLANATIONS OF THE SUCCESS AND FAILURE OF DIETING.

1.) The role of denial. FAIL
 Research into cognitive psychology has shows that trying to suppress a thought frequently has
the opposite effect, making it even more prominent. The theory of ironic processes of mental
control says that central to any dieting strategy is the decision not to eat certain foods, or to eat
less of them. As dieters try to suppress thoughts about food deemed to be ‘forbidden’ by the
diet, they actually think about it more and the food becomes more attractive.

2.) Detail – SUCCESS
 REDDEN – Suggests that the secret to success lies in the attention we pay to what is being eaten.
He claims that people usually like experiences less as they repeat them. When it comes to
dieting, this makes it harder to stick to the particular regime. However, to overcome this redden
suggests instead of thinking ‘not another salad’ try and think of the individual details of the meal
‘lettuce, rocket, tomatoes’. By focuses on the specific details, people get less bored easily and so
are better able to maintain their diet.

Biological explanations of eating behaviour.

2a-NEURAL MECHANISMS IN EATING AND SATIATION.

1.) The amygdala and the inferior frontal cortex.
 Humans often experience a feeling of hunger just from thinking about food, this is due to our
memory of it or we have stored in our brain and the smells and tastes associated with the food
we have eaten in the past. The neural control of these cognitive factors in hunger is likely to
originate from two main brain areas, the amygdala and the inferior frontal cortex.
 The amygdala is thought to be primarily in the selection of foods on the basis of previous
experience. For example, Rolls and Rolls found that surgically removing the amygdala in rats
would cause them to eat not only familiar foods but also unfamiliar foods indiscriminately,
whereas amygdala-intact rats would initial avoid unfamiliar foods and only consume the more
familiar foods instead.
 The inferior frontal cortex receives messages from the part of the brain that controls smells (the
olfactory bulb). Because odours influence the taste in foods, damage to the inferior frontal
cortex is thought to decrease eating because of diminished sensory responses to food odour,
and also probably taste.

2.) Neuropeptide Y (NPY)
 A neurotransmitter in the hypothalamus called Neuropeptide Y (NPY), is particularly important
in turning on eating. When NPY is injected into the hypothalamus of rats, it causes them to
immediately begin feeding, even when satiated. Repeated injections of NPY into the
hypothalamus of rats produced obesity in just a few days.