Key Maths phrases, explanations and Formula

Algebra (C1 and C2)

SHOW THAT: starting with the information you are given, show all the steps of working until you get to the answer

Find equation of a line write in form \(y = mx + c \), with \(m \) gradient and \(c \) intercept

or use \(y - y_1 = m(x - x_1) \) with \((x_1, y_1) \) a point on the line

Perpendicular line gradient is \(-\frac{1}{m} \)

Intersects the \(x \)-axis: make \(y = 0 \)

Intersects the \(y \)-axis: make \(x = 0 \)

Coordinates of intersection of lines: solve the equations simultaneously

Give exact solutions: leave as a surd and/or fraction (or in term of \(\pi \) or a log)

No decimal answers for exact solutions

If \(x = 2 \) is a root, find the other roots: divide the polynomial by \((x - 2) \)

Prove no real roots: Prove that the discriminant is negative \((b^2 - 4ac < 0) \)

Prove it is a tangent: Make the equations of the line and curve equal to form a new quadratic and show there is only 1 solution

Or show discriminant is zero \((b^2 - 4ac = 0) \)

Distance between 2 points Make a right angled triangle and use Pythagoras

Prove 2 lines don’t intersect Must be parallel – same gradient

Prove line and curve don’t intersect Solve simultaneously E.g. Make the equations of the line and curve equal to form a new quadratic and show there is no solution Or show discriminant is negative

Turning point/Stationary point Solve \(\frac{dy}{dx} = 0 \) for \(x \)-values either side of turning point

Determine Nature of turning point Decide whether a maximum, minimum or inflection point by using \(\frac{d^2y}{dx^2} \)

If \(< 0 \) \(\rightarrow \) Max, \(> 0 \) \(\rightarrow \) Min, if \(= 0 \) then need to compare \(\frac{dy}{dx} \) for \(x \)-values either side of turning point

Increasing function When \(\frac{dy}{dx} > 0 \)

Area of a Triangle Either \(\frac{1}{2} \times \text{base} \times \text{height} \) OR \(\frac{1}{2} \times a \times b \times \sin C \)

Area of a Sector \(\frac{1}{2} r^2 \theta \) (where \(\theta \) is in radians)

Arc Length \(S = r\theta \) (where \(\theta \) is in radians)

Calculate gradient at a point Substitute \(x \) into \(\frac{dy}{dx} \)

Calculate the area under a curve Use integration between two limits