INSTRUCTIONS: Answer question ONE and any other TWO questions.

QUESTION ONE (30 MARKS)

(a) With respect to accumulation factors, explain the principle of consistency.

(b) Define a nominal rate of interest

(c) What is the “Force of interest per unit time”?

(d) The rate of interest is

\[\delta(t) = \begin{cases}
0.08t & \text{for } 0 \leq t < 5 \\
0.1 - 0.01t & \text{for } 5 \leq t < 10
\end{cases} \]

Find an accumulation factor from time 0 to time \(t \).

(e) Given that \(\ddot{a}_n = 7.029584 \) and \(\ddot{a}_2n = 10.934563 \), find the rate of interest \(i \) and \(n \).

(f) An individual wishes to receive an annuity which is payable monthly in arrears for 15 years. The annuity is to commence in exactly 10 years at an initial rate of £12,000 per annum. The payments increase at each anniversary by 3% per annum. The individual would like to buy the annuity with a single premium 10 years from now. Calculate the single premium required in 10 years’ time to purchase the annuity assuming an interest rate of 6% per annum effective.

(g) Bruce deposits 100 into a bank account. His account is credited interest at a nominal rate of interest of 4% convertible semi-annually. At the same time, Peter deposits 100 into a separate account. Peter’s account is credited interest at a force of interest of \(\delta \). After 7.25 years, the value of each account is the same. Calculate \(\delta \).

(h) An amount \(X \) is deposited in an account that grows interest at an annual effective rate of interest 6%. Another amount \(\frac{X}{2} \) is deposited in another account that earns interest at an annual effective rate of discount \(d \). After 10 years, the total interest earned by both accounts is equal. Find \(d \).