Univariate
• Analyses differences among cases for only 1 variable

Bivariate or Binomial
• Analyses the relationship between 2 variables

Multivariate
• Analysis for more than 2 variables

Distributions

Binomial
• # of successes in a situation with only two possible outcomes
 o Yes or No

Normal (Gaussian)
• Often seen when outcome is a continuous measurement
 o Ex: height

99.7% of the data are within 3 standard deviations of the mean
95% within 2 standard deviations
90% within 1 standard deviation

If the outcome is a count of events
• Z=0, area to the right of is .5 (half the distribution). When Z=0 1.96 (means 1.96 standard distributions to the right of the mean), then area = .025 (ie 2.5% of the distribution on each side, added gives .05 which is the p-value)
- An alternative way to look at and interpret these comparisons would be to compute the percent relative effect (the percent change in the exposed group). % increase = (RR - 1) x 100, e.g. (4.2 - 1) x 100 = 320% increase in risk. Those who had the incidental appendectomy had a 320% increase in risk of getting a post-operative wound infection.
 - If it had been <1, it would be that percentage decrease in risk
 - If a risk ratio is <1, this suggests that the exposure is associated with a reduction in risk
 - If the risk ratio is 1, it suggests no difference or little difference in risk (incidence in each group is the same)
 - If the risk ratio is >1, it suggests an increased risk of that outcome in the exposed group

Odds

- Number of successes divided by the number of non-successes
- \(\frac{x}{n-x} \)
- Always a number between 0 and infinity
- Excludes missing data, more accurate and a better representation of data
- Successes/non-successes

Odds Ratio

- An odds ratio (OR) is a measure of association between an exposure and an outcome.
- The OR represents the odds that an outcome will occur given a particular exposure, compared to the odds of the outcome occurring in the absence of that exposure.
- The odds ratio (OR) is an index that calculates the odds of the development of a particular outcome (e.g. disease). The odds ratio calculation is different than the RR calculation: OR = number of successes/number of non-successes.
- Can be calculated for both prospective and retrospective studies
 - Uses those who did not develop whatever disorder you’re looking at
- Cannot be less than zero, but CI interval calculation allows this to happen
 - If a confidence interval for an odds ratio contains 1, it is insignificant
 - Apply transformation by calculating CCI for a log of the OR then back transforming the end points
 - CI is then not symmetric around your point estimate
- Odds of A/Odds of B
- If RR or OR is greater than 1, it is interpreted as the risk/odds in the exposed group are greater than the risk in non-exposed group. (Exposed here meaning, for example, exposure to a treatment/allergen/virus, etc.)
- Example: A clinical trial comparing the drug ‘fluoxetine’ to placebo stated an odds ratio for panic attacks as OR = 0.3 with a 95%CI: 0.2-0.4. (Hint: when researchers calculate an odds ratio, they do it like this: the numerator is the odds in the intervention arm while the denominator is the odds in the control or placebo arm; any OR<1 can be described as an OR>1 by changing the direction of comparison using the inverse).
 - The odds of panic attacks in the fluoxetine arm are 0.30 times the odds of panic attacks in the placebo

Preview from Notesale.co.uk Page 12 of 50
Must give degrees of freedom!
- Can only use when the ‘expected’ is >5

Expected Value in a Chi-Square

Question 14

A study gives the following frequencies for a diagnosis (DX)

<table>
<thead>
<tr>
<th></th>
<th>DX</th>
<th>NoDX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>10</td>
<td>22</td>
</tr>
<tr>
<td>Female</td>
<td>10</td>
<td>38</td>
</tr>
</tbody>
</table>

If sex was unrelated to presence of diagnosis what would be the expected number of men with a diagnosis in this sample?

A: 8

Assuming 32 men sampled and one quarter have a DX

B: 10

C: 6

D: 22

- (Column Total x Raw Total)/ grandtotal
- \((20 \times 32)/80 = 640/80 = 64/8 = 8\)
Fisher’s Exact Test

- Use when can’t use chi square because can be used for small samples (doesn’t have the >5 criteria for expected cells)
- SPSS gives this output when you do a chi squared test. When $P < .05$, there is evidence that the RR and OR are not equal to 1

Tests for Paired Samples

Paired groups t-test (Dependent Samples t-test or Matched pairs t-test)

- Each subject in 1 group has a unique ‘partner’ in the other or the two groups are related in some way (within-subjects, repeated measures)
 - Married couples, matching non-exposed to exposed with a continuous outcome
 - Having obtained continuous test-scores at the beginning and end of the course to assess progress
- Assume that the differences between pairs are normally distributed
- The standard error of the difference is calculated differently.
 - $s.e.(m_1 - m_2) = \frac{s_d}{\sqrt{n}}$
 - s_d is the standard deviation of the differences
 - n now is the number of pairs
- 95% confidence interval is given by

$$\left[m_1 - m_2 - 2s.e.(m_1 - m_2), m_1 - m_2 + 2s.e.(m_1 - m_2) \right]$$

- Null hypothesis: population means the same
- The paired t-test compares with a t-distribution with n-1 degrees of freedom.
ANOVA OUTput for multiple regression - R Square

- Tests for any difference with a single test
- If you take all the groups together, these isn’t evidence of a significant difference between social classes in height

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.087a</td>
<td>.008</td>
<td>.002</td>
<td>8.019</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), soc7, soc6, soc3, soc5, soc2, soc4

- More predictors, explain more variance, but many are related by chance
- R= correlation coefficient
- r² indicates the strength of the regression equation which is used to predict the value of the y variable
- Adjusted r square takes into account the variance that we explain by chance
 - Ex: coincidentally sampling more short people from a poor social class

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>491.021</td>
<td>6</td>
<td>81.837</td>
<td>1.273</td>
<td>.267b</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>993</td>
<td>64.297</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>999</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Dependent Variable: Height at Age 16 in Centimeters
b. Predictors: (Constant), soc7, soc6, soc3, soc5, soc2, soc4

- 0= poor predictor 1= excellent predictor

Multiple Regression
- To adjust for other variables, just include them in your regression model (for multiple linear regression, the fitted model is a hyperplane rather than a line)
 - E(Y) = β0 + β1 X1 + β2 X2
Fitted equation of the interaction model to NCDS data:

\[weight = -72.01 + 0.77 \times height + 38.26 \times sex - 0.22 \times height \times sex \]

\[(p=0.004) \]

- The p-value of the Interaction effect \(\beta_3 = -0.22 \) is 0.004
- \(height \times sex \) interaction effect is statistically significant
- The height-weight relationship significantly differs between boys and girls

Interpreting a Regressing equation with an interaction

\[weight = -72.01 + 0.77 \times height + 38.26 \times sex - 0.22 \times height \times sex \]

- On the basis of the above fitted equation, general formulae for the effects of height and sex on weight are:
 - Effect of height = \(\beta_1 + \beta_3 \times sex \)
 - Effect of \(\beta_3 \times sex \) = \(\beta_2 + \beta_3 \times height \)

- What is the effect of height for boys (sex=0)?
 - \(\beta_1 + \beta_3 \times 0 = \beta_1 = 0.77 \text{ kg/cm} \)

- What is the effect of height for girls (sex=1)?
 - \(\beta_1 + \beta_3 \times 1 = \beta_1 + \beta_3 = 0.77 - 0.22 = 0.55 \text{ kg/cm} \)

- The average height of the children in the sample is 166.2 cm. What is the effect of sex on weight at average height?
 - \(\beta_2 + \beta_3 \times 166.2 = 38.26 - 0.22 \times 166.2 = 1.7 \text{ kg} \) (this is the difference in mean weight between girls and boys at the combined average height)
Maternal Sensitivity Example

Second which coefficients contribute to the difference. The question thus asks what is the difference in the expected anger proneness of a female child with average maternal sensitivity and low MAOA activity genotype compared to the reference group. With maternal sensitivity=0 no coefficient associated with maternal sensitivity will contribute. With MAOA-H=0 no coefficient associated with MAOA will contribute. This leaves only one coefficient describing the difference: \(0.045 \times \text{female}=0.045\).

The estimates suggest that for children with the low activity genotype...

The question is about low activity MAOA genotype children, so no coefficient involving MAOAH is involved. Only coefficients involving maternal sensitivity are involved. Thus responsiveness of boys is -0.330 (boys are negatively responsive) Responsiveness of girls is -0.330+0.347=0.017 (girls are very weakly positively responsive) So girls are more positively responsive to maternal sensitivity than boys.

Are MAOA-H girls more positively responsive to maternal sensitivity? MAOA-H boys responsiveness is -0.330+0.552=0.222 MAOA-H girls responsiveness is -0.330+0.552+0.347-0.285=0.284. Girls are a little more positively responsive to maternal sensitivity than boys.
Which Test to Use and When

Three types of samples:
- Non-exposed matched to exposed, continuous O, E-O association index = difference in location of O distribution between exposed and non-exposed
 - Paired samples t-test, Wilcoxon signed ranks test, mean difference estimator for paired samples
- Non-exposed matched to exposed, binary O, E-O association index = RR or OR
 - McNemar test, RR and OR estimators for paired samples
- Non-cases matched to cases, binary O, E-O association index = OR
 - McNemar test, OR estimator for paired samples

Parametric and Non Parametric tests

<table>
<thead>
<tr>
<th>Goal</th>
<th>Type of Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Describe one group</td>
<td>Measurement (from Normal Population)</td>
</tr>
<tr>
<td>Mean, SD</td>
<td></td>
</tr>
<tr>
<td>Compare one group to a hypothetical value</td>
<td>One-sample t-test</td>
</tr>
<tr>
<td>Compare two unpaired groups</td>
<td>Unpaired t-test</td>
</tr>
<tr>
<td>Compare two paired groups</td>
<td>Paired t test</td>
</tr>
<tr>
<td>Quantify association between two variables</td>
<td>Pearson correlation</td>
</tr>
</tbody>
</table>

Types of Data:
- Measurement (from Normal Population)
- Measurement (from Non-Normal Population)
- Rank, Score, or Measurement
- Binomial (Two Possible Outcomes)
- Median, interquartile proportion range

Tests:
- One-sample t-test
- Unpaired t-test
- Paired t test
- Pearson correlation

- Not in Syllabus or Exam
- Mann-Whitney test Or Wilcoxon rank-sum test
- Wilcoxon signed-rank test
- Spearman correlation
- McNemar’s test
- Contingency Tables ORs/RRs

Chi-square (know how to calculate expected values) or Fisher’s test for smaller samples