Abstract

A large majority of research claiming to have identified definitive predictors of criminality is limited by having solely focused on criminal behaviour, failing to acknowledge another important aspect of criminality; criminal thinking. In order to examine whether previously identified predictors of criminality are indeed as stated, and not simply predictors of criminal behaviour, the present study tested the hypotheses that ADHD-like traits, sensation seeking tendencies, education, age and gender would be significant predictors of measures of criminal thinking. A backwards multiple regression revealed that a model of ADHD-like traits, gender and level of education accounted for a significant proportion of variance in measures of criminal thinking, though sensation seeking and age were not predictive of criminal thinking to a significant degree. How such findings should inform understanding of and further investigations regarding the U.K prison population, therapeutic practices for ADHD and possible reasons for the disparity between predictors of criminal behaviour and thinking are discussed.
### Collinearity Diagnostics

<table>
<thead>
<tr>
<th>Model</th>
<th>Dimension</th>
<th>Eigenvalue</th>
<th>Condition Index</th>
<th>Variance Proportions (Constant)</th>
<th>MeanADHD</th>
<th>SSTotal</th>
<th>Gender</th>
<th>Age</th>
<th>Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>5.475</td>
<td>1.000</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>2</td>
<td>4.255</td>
<td>.099</td>
<td>7.434</td>
<td>.00</td>
<td>.01</td>
<td>.01</td>
<td>.18</td>
<td>.47</td>
<td>.10</td>
</tr>
<tr>
<td>3</td>
<td>9.667</td>
<td>.059</td>
<td>10.062</td>
<td>.00</td>
<td>.49</td>
<td>.00</td>
<td>.04</td>
<td>.07</td>
<td>.63</td>
</tr>
<tr>
<td>4</td>
<td>10.230</td>
<td>.054</td>
<td>22.307</td>
<td>.00</td>
<td>.35</td>
<td>.46</td>
<td>.21</td>
<td>.07</td>
<td>.19</td>
</tr>
<tr>
<td>5</td>
<td>1.000</td>
<td>.011</td>
<td>22.307</td>
<td>1.00</td>
<td>.14</td>
<td>.34</td>
<td>.28</td>
<td>.51</td>
<td>.12</td>
</tr>
<tr>
<td>6</td>
<td>4.723</td>
<td>.131</td>
<td>6.007</td>
<td>.01</td>
<td>.01</td>
<td>.12</td>
<td>.37</td>
<td>.07</td>
<td>.07</td>
</tr>
<tr>
<td>3</td>
<td>8.197</td>
<td>.070</td>
<td>15.237</td>
<td>.97</td>
<td>.10</td>
<td>.35</td>
<td>.59</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>2</td>
<td>1.000</td>
<td>.056</td>
<td>9.186</td>
<td>.00</td>
<td>.85</td>
<td>.31</td>
<td>.03</td>
<td>.02</td>
<td>.00</td>
</tr>
<tr>
<td>4</td>
<td>15.237</td>
<td>.020</td>
<td>1.000</td>
<td>.00</td>
<td>.01</td>
<td>.01</td>
<td>.00</td>
<td>.00</td>
<td>.00</td>
</tr>
</tbody>
</table>

Excluded Variables:

<table>
<thead>
<tr>
<th>Model</th>
<th>Beta In</th>
<th>t</th>
<th>Sig.</th>
<th>Partial Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Age</td>
<td>.059</td>
<td>.487</td>
<td>.628</td>
</tr>
<tr>
<td>3</td>
<td>Age</td>
<td>.019</td>
<td>.161</td>
<td>.873</td>
</tr>
<tr>
<td></td>
<td>SSTotal</td>
<td>.106</td>
<td>1.006</td>
<td>.318</td>
</tr>
</tbody>
</table>

Residuals Statistics:

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted Value</td>
<td>1.1784</td>
<td>2.5321</td>
<td>1.8406</td>
<td>.27935</td>
<td>73</td>
</tr>
<tr>
<td>Std. Predicted Value</td>
<td>-2.371</td>
<td>2.475</td>
<td>.000</td>
<td>1.000</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>0.050</td>
<td>0.133</td>
<td>0.074</td>
<td>0.020</td>
<td>73</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>----</td>
</tr>
<tr>
<td>Standard Error of Predicted Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted Predicted Value</td>
<td>1.1673</td>
<td>2.5150</td>
<td>1.8380</td>
<td>0.27975</td>
<td>73</td>
</tr>
<tr>
<td>Residual</td>
<td>-0.62292</td>
<td>0.78152</td>
<td>0.00000</td>
<td>0.32235</td>
<td>73</td>
</tr>
<tr>
<td>Std. Residual</td>
<td>-1.892</td>
<td>2.373</td>
<td>0.000</td>
<td>0.979</td>
<td>73</td>
</tr>
<tr>
<td>Stud. Residual</td>
<td>-1.929</td>
<td>2.421</td>
<td>0.004</td>
<td>1.010</td>
<td>73</td>
</tr>
<tr>
<td>Deleted Residual</td>
<td>-0.64767</td>
<td>0.82774</td>
<td>0.00257</td>
<td>0.34334</td>
<td>73</td>
</tr>
<tr>
<td>Stud. Deleted Residual</td>
<td>-1.969</td>
<td>2.513</td>
<td>0.008</td>
<td>1.024</td>
<td>73</td>
</tr>
<tr>
<td>Mahal. Distance</td>
<td>0.692</td>
<td>10.772</td>
<td>2.959</td>
<td>2.299</td>
<td>73</td>
</tr>
<tr>
<td>Cook’s Distance</td>
<td>0.000</td>
<td>0.147</td>
<td>0.017</td>
<td>0.029</td>
<td>73</td>
</tr>
<tr>
<td>Centered Leverage Value</td>
<td>0.010</td>
<td>0.150</td>
<td>0.041</td>
<td>0.032</td>
<td>73</td>
</tr>
</tbody>
</table>

a. Dependent Variable: MeanCT

Scatterplot

Dependent Variable: MeanCT

Regression Standardized Predicted Value

Regression Studentized Residual

Preview from Notesale.co.uk
Page 19 of 21