Chemical Kinetics

1. For the reaction \(A + B \rightarrow A_B \): Rate \(= k[A][B]^2 \) with \(k = 2 \times 10^{-3} \text{ mol}^{-2} \text{ s}^{-1} \), calculate the initial rate of the reaction when \([A] = 0.1 \text{ mol} \) and \([B] = 0.5 \text{ mol} \). Calculate the rate of reaction after \(2 \text{ min} \), when \([A] = 0.05 \text{ mol} \). Calculate the half-life of a first-order reaction from the rate constant given below: \(k = 0.05 \text{ min}^{-1} \). Calculate the age of the sample if only 80% of the
\(\text{C}^{14} \) found in living tissue is the first-order reaction takes 40 minutes for 30% decomposition. Calculate the concentration of \(A \), remaining after 100 s, if the initial concentration of \(A \) is 1.0 mol. \(0 \text{.384 mol}^{-1} \)

2. Sucrose decomposes in an acid solution into glucose and fructose according to the following rate law with \(\frac{1}{4} = 2 \text{.00 hours} \). What fraction of the sample of sucrose remains after \(\frac{1}{8} \text{ hours} \)? \(0.154 \)

3. A first-order reaction has a rate constant \(1.5 \times 10^{-3} \text{ s}^{-1} \). How long will it take for 50% of its initial amount of the reactant to be used? \(\frac{1}{3} \text{ hours} \). How long will it be before half of its initial amount of the reactant is used? \(444 \text{ s} \).