1. Let ABC be an acute-angled triangle; AD be the bisector of $\angle BAC$ with D on BC; and BE be the altitude from B on AC. Show that $\angle CED > 45^\circ$.

Solution:
Draw DL perpendicular to AB; DK perpendicular to AC; and DM perpendicular to BE. Then $EM = DK$. Since AD bisects $\angle A$, we observe that $\angle BAD = \angle KAD$. Thus in triangles ALD and AKD, we see that $\angle LAD = \angle KAD$; $\angle AKD = 90^\circ = \angle ALD$; and AD is common. Hence triangles ALD and AKD are congruent, giving $DL = DK$. But $DL > DM$, since BE lies inside the triangle(by acuteness property). Thus $EM > DM$. This implies that $\angle EDM > \angle DEM = 90^\circ - \angle EDM$. We conclude that $\angle EDM > 45^\circ$. Since $\angle CED = \angle EDM$, the result follows.

Alternate Solution:
Let $\angle BAC = \theta$. We have $CD = ab/(b + c)$ and $CE = a \cos C$. Using sine rule in triangle CED, we have

$$\frac{CD}{\sin \theta} = \frac{CE}{\sin(C + \theta)}.$$

This reduces to

$$(b + c) \sin \theta \cos C = b \sin C \cos \theta + b \cos C \sin \theta.$$

Simplification gives $c \sin \theta \cos C = b \sin C \cos \theta$ so that

$$\tan \theta = \frac{b \sin C}{c \cos C} = \frac{\sin B}{\cos C} = \frac{\sin B}{\sin(\pi/2 - C)}.$$

Since ABC is acute-angled, we have $A < \pi/2$. Hence $B + C > \pi/2$ or $B > (\pi/2) - C$. Therefore $\sin B > \sin(\pi/2 - C)$. This implies that $\tan \theta > 1$ and hence $\theta > \pi/4$.

2. Let a, b, c be three natural numbers such that $a < b < c$ and $\gcd(c - a, c - b) = 1$. Suppose there exists an integer d such that $a + d, b + d, c + d$ form the sides of a right-angled triangle. Prove that there exist integers l, m such that $c + d = l^2 + m^2$.

Solution:
We have

$$(c + d)^2 = (a + d)^2 + (b + d)^2.$$

This reduces to

$$d^2 + 2d(a + b - c) + a^2 + b^2 - c^2 = 0.$$
