ARDEN'S THEOREM

Arden's Theorem

In order to find out a regular expression of a Finite Automaton, we use Arden’s Theorem along with the properties of regular expressions.

Statement –

Let P and Q be two regular expressions.

If P does not contain null string, then $R = Q \+ RP$ has a unique solution that is $R = QP^*$

Proof –

$R = Q + Q \+ RP$ [After putting the value $R = Q \+ RP$]

= $Q \+ QP + RPP$

When we put the value of R recursively again and again, we get the following equation –

$R = Q \+ QP + QP^2 + QP^3$.....

$R = Q (\epsilon + P + P^2 + P^3 +)$

$R = QP^*$ [As P^* represents $(\epsilon + P + P^2 + P^3 +)$]

Hence, proved.

Assumptions for Applying Arden’s Theorem –

- The transition diagram must not have NULL transitions
- It must have only one initial state

Method

Step 1 – Create equations as the following form for all the states of the DFA having n states with initial state q_1.

$q_1 = q_1R_{11} + q_2R_{21} + ... + q_nR_{n1} + \epsilon$

$q_2 = q_1R_{12} + q_2R_{22} + ... + q_nR_{n2}$

.................................

.................................

.................................

$q_n = q_1R_{1n} + q_2R_{2n} + ... + q_nR_{nn}$

R_{ij} represents the set of labels of edges from q_i to q_j, if no such edge exists, then $R_{ij} = \emptyset$

Step 2 – Solve these equations to get the equation for the final state in terms of R_{ij}

Problem

Construct a regular expression corresponding to the automata given below –