6.1 Power Series - Review

Power series - infinite series $f(x) = \sum_{n=0}^{\infty} c_n(x-a)^n$

a is called centre.

$\sum_{n=0}^{\infty} (n+1)^n$ is power series centred at $a = -1$

$\sum_{n=0}^{\infty} 2^nx^n$ at $a = 0$

Facts:

1. A power series is convergent if it is defined only if its sequence of partial sums $S_n(x) = \sum_{n=0}^{N} c_n(x-a)^n$ converges.

That is if

$$\lim_{N \to \infty} S_N(x) = \lim_{N \to \infty} \sum_{n=0}^{N} c_n(x-a)^n$$

exists.

If the limit D.N.E. at x, then the series is said to be divergent at x.

2) Interval of convergence

Every power series has an interval of convergence.

It is the set $[a-r, a+r]$ for which the series converges.

The centre is the interval of convergence in the centre of the series.