1.5.1 Example 5

We can show that

\[\int_a^x (t + 1) \, dt = \frac{1}{2}(x^2 - a^2) + (x - a) \]

This means that \(A(x) = \int_a^x (t + 1) \, dt \). Differentiating \(A(x) \) we get,

\[A'(x) = \frac{1}{2}(2)(x) + 1 = x + 1 = f(x) \]

1.5.2 Example 6

Let \(f(x) = 3x^2 \). We observe that if \(F(x) = x^3 \) then \(F'(x) = 3x^2 = f(x) \). Part (2) of the fundamental theorem of Calculus states,

\[\int_a^b 3x^2 \, dx = F(b) - F(a) = b^3 - a^3 \]

1.6 Proof of the fundamental theorem of Calculus

If \(f \) is a continuous function and \(F \) is any function such that \(F'(x) = f(x) \), then \(F \) is said to be an antiderivative of \(f \). \(F \) is also known as the primitive integral or the indefinite integral.

1.6.1 Part 1

\[A'(x) = \lim_{h \to 0} \frac{A(x + h) - A(x)}{h} \]

\[A(x + h) - A(x) = \int_a^{x+h} f(t) \, dt - \int_a^x f(t) \, dt = \int_a^x f(t) \, dt + \int_x^{x+h} f(t) \, dt \]

From the mean value theorem we have,

\[\frac{1}{x+h-x} \int_x^{x+h} f(t) \, dt = f(c) = \frac{1}{h} \int_x^{x+h} f(t) \, dt \implies hf(c) = \int_x^{x+h} f(t) \, dt \]

For some \(c = c_h \in (x, x+h) \), meaning \(x < c_h < x+h \).

\[A'(x) = \lim_{h \to 0} \frac{A(x + h) - A(x)}{h} = \lim_{h \to 0} f(c) = \lim_{h \to 0} f(c_h), \]

With \(x < c_h < x+h \). By the sandwich theorem as \(h \to 0, c_h \to x \), so \(A'(x) = f(x) \).

1.6.2 Part 2

If \(F'(x) = f(x) \) then, \(\int_a^b f(x) \, dx = F(b) - F(a) \). From part (1), \(A(x) = \int_a^x f(t) \, dt \) satisfies \(A'(x) = f(x) \).

Introducing the equation \(G(x) = F(x) - A(x) \implies G'(x) = F'(x) - A'(x) \implies G(x) = f(x) - f(x) = 0 \). So \(G \) is a constant, \(G(x) = c \). So \(F(x) = A(x) + G(x) \implies F(x) = A(x) + c \). So,

\[F(x) = \int_a^x f(t) \, dt + c \]

From the original statement,

\[F(b) - F(a) = (\int_a^b f(t) \, dt + c) - (\int_a^a f(t) \, dt + c) = \int_a^b f(t) \, dt \]

as \(\int_a^a f(t) \, dt = 0 \) from integral property (5).

To conclude, the fundamental theorem of Calculus says (1) differentiation is the inverse of integration. (2) integration is the inverse of differentiation.