(2) \(\text{Looking at the graph of } f(x) = \ln(x) \)
\(\text{Find the vertical asymptote.} \)
\(\lim_{x \to 0^+} f(x) = -\infty \)
\(V.A. = 0 \)

(3) \(\text{Find the } V, A \) of \(f(x) = \frac{x^2 - 3x + 2}{x - 1} \)

Note: Rational function and

\(\text{V.A. if denominator is zero, not both.} \)

Try: \(x = 1 \) because the denominator is zero.

\(\lim_{x \to 1^+} \frac{x^2 - 3x + 2}{x - 1} = \infty \)

\(\text{The squeeze theorem} \)

If \(f(x) \leq g(x) \leq h(x) \) when \(x \) is near \(c \)

\(\lim_{x \to c} f(x) = L = \lim_{x \to c} h(x) \)

and also

\(\lim_{x \to c} g(x) = \text{minimum} \)

then \(f(x) \neq h(x) \)

or an interval needs to be