There are also some surprising ways to use the theorem. For example, let \(n \in \mathbb{Z}^+ \), and let \(0 \leq m \leq n \). For any positive integer \(k \), \(n^k \) can be expressed as a sum of powers of \(m \) and \(n - m \). To see this, simply note that, by the Binomial Theorem,

\[
n^k = \sum_{j=0}^{k} \binom{k}{j} m^j (n - m)^{k-j}.
\]

For an example, \(5^n = \sum_{k=0}^{n} \binom{n}{k} 3^k 2^{n-k} \).

Here are some additional examples of combinatorial proof.

Example 4: A nameless algebraic identity states that
\[
\binom{2n}{2} = 2 \binom{n}{2} + n^2.
\]

Here is a combinatorial solution. Its use of color is just one of several ways to differentiate the elements of the two subsets introduced to drive the proof.

Proof: The expression on the left-hand side is the number of 2-subsets of a 2\(n \)-set. Let \(A \) be a 2\(n \)-set, and suppose that \(A \) contains \(n \) red elements and \(n \) blue elements. We now choose all the possible 2-subsets, by counting all the choices: all the 2-subsets that have exactly 2 red elements, all the 2-subsets that have exactly 2 blue elements, and all the 2-subsets that have exactly one red element \(A \) and one blue element. There are \(\binom{n}{2} \) red 2-subsets, \(\binom{n}{2} \) blue 2-subsets, and \(\binom{n}{2} \) \(\binom{n}{1} \) 2-subsets containing one red and one blue elements. By the Sum Rule, the number of 2-subsets of \(A \) is \(2 \binom{n}{2} + n^2 \). \(\square \)

Example 5: Here is a variation on the theme. Suppose we want to prove the identity,
\[
\binom{2n}{3} = 2 \binom{n}{3} + 2n \binom{n}{2}.
\]

The same technique used in the preceding problem leads to the following argument.

Proof: The expression on the left counts the number of 3-subsets of a 2\(n \)-set. Let \(A \) be a 2\(n \)-set containing \(n \) red and \(n \) blue elements. There are \(\binom{n}{3} \) red 3-subsets, \(\binom{n}{3} \) blue 3-subsets, \(\binom{n}{2} \binom{n}{1} \) 3-subsets with two red elements and one blue, and \(\binom{n}{2} \binom{n}{1} \) 3-subsets with two blue elements and one red. Simplifying, we see that the number of 3-subsets of \(A \) is given by \(\binom{n}{3} + \binom{n}{2} \binom{n}{1} + \binom{n}{2} \binom{n}{1} = 2 \binom{n}{3} + 2n \binom{n}{2} \). The result follows. \(\square \)

Example 6: Here’s another, asking for a proof of the identity
\[
\binom{n}{r} \binom{r}{k} = \binom{n}{k} \binom{n-k}{r-k}.
\]