A plane area is bounded by the curve \(y^2 = 4x \) and the line \(y = x \).

a) Find the area bounded by the curve.

Points of intersection:
\[y^2 = 4x \quad y = x \]
\[y^2 = 4y \]
\[y^2 - 4y = 0 \]
\[y(y - 4) = 0 \]
\[y = 0 \quad y = 4 \]
\[x = 0 \quad x = 4 \]

\[A = \int_0^4 (y^2 - 4y) \, dy \]
\[= \left[\frac{y^3}{3} - 2y^2 \right]_0^4 \]
\[= \left[\frac{4^3}{3} - 2 \cdot 4^2 \right] \]
\[= \frac{64}{3} - 32 \]
\[= \frac{64 - 96}{3} \]
\[= \frac{-32}{3} \]
\[\approx -10.67 \text{ units}^2 \]

OR:
\[A = A_{\text{parabolic segment}} - A_{\text{triangle}} \]
\[= \frac{1}{2} \cdot 4 \cdot 4 - \frac{1}{2} \cdot 4 \cdot 4 \]
\[= 8 - 8 \]
\[= 0 \text{ units}^2 \]