Multiplying a Polynomial by a Monomial The Distributive Law

Introduction: Evaluate; $3(2 + 2)$ using BEDMAS

$$= 3(4)$$

$$= 12$$

Is there another method that would yield the same answer?

$$= 3*2 + 3*2$$

$$= 6 + 6$$

Which method above would be the preferred method?

Method 2

Now, if the question was simplify $3(2x + 2)$, which of the above methods cannot be used? Why?

Therefore, $3(2x + 2)$ This is called the Distributive law.

More Examples:

1. Expand (simplify):
 (a) $2(3a - 2b)$
 (b) $-4(n^2 - 3nt + 2)$
 (c) $2x^2(3a^2 - 7a)$
 (d) $(5y - 2x + 1)(2x^2)$

 $= 6a - 4b$
 $= -4n^2 + 12nt - 8$
 $= 6x^2a - 14ax$
 $= 10x^2y - 4x^3 + 2x^2$

2. Find expressions for the perimeter, P, and the area, A, for each of the following figures.

 (a)
 \[P = 2(l + w) \quad \text{or} \quad P = 2l + 2w \]
 \[P = 2(36 + 2t + 1) \quad \text{or} \quad P = 2(36 + 2t) \]
 \[= 74 + 2t \]
 \[A = lw \]
 \[= 3t \]

 (b)
 \[P = s_1 + s_2 + s_3 + s_4 \]
 \[P = (x + 2) + (x + 1) + (x - 2) + (3x - 2) \]
 \[= 6x - 1 \]

 \[A = \frac{1}{2} a(b + c) \]
 \[A = \frac{1}{2} \]
 \[\alpha = \frac{\pi}{2} \]
 \[\alpha = \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]

 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]
 \[= \frac{\pi}{2} \]