
Ulla Kirch-Prinz

Peter Prinz

A Complete Guide to
Programming in C++

Preview from Notesale.co.uk

Page 2 of 846

v

This book was written for readers interested in learning the C++ programming
language from scratch, and for both novice and advanced C++ programmers
wishing to enhance their knowledge of C++. It was our goal from the begin-
ning to design this text with the capabilities of serving dual markets, as a text-
book for students and as a holistic reference manual for professionals.

The C++ language definition is based on the American National Stan-
dards Institute ANSI Standard X3J16. This standard also complies with ISO
norm 14882, which was ratified by the International Standardization Organi-
zation in 1998. The C++ programming language is thus platform-independent
in the main with a majority of C++ compilers providing ANSI support. New
elements of the C++ language, such as exception handling and templates, are
supported by most of the major compilers. Visit the Jones and Bartlett web site
at www.jbpub.com for a listing of compilers available for this text.

The chapters in this book are organized to guide the reader from elemen-
tary language concepts to professional software development, with in-depth
coverage of all the C++ language elements en route. The order in which these
elements are discussed reflects our goal of helping the reader to create useful
programs at every step of the way.

preface

Preview from Notesale.co.uk

Page 6 of 846

discussed. Students learn that templates allow the construction of functions and classes
based on types that have not yet been stated. Thus, templates are a powerful tool for
automating program code generation.

Chapter 33 explains standard class templates used to represent containers for more
efficient management of object collections. These include sequences, such as lists and
double ended queues; container adapters, such as stacks, queues, and priority queues;
associative containers, such as sets and maps; and bitsets. In addition to discussing how
to manage containers, the chapter also looks at sample applications, such as bitmaps for
raster images, and routing techniques.

Additional Features
Chapter Goals A concise chapter introduction, which contains a description of the
chapter’s contents, is presented at the beginning of each chapter. These summaries also
provide students with an idea of the key points to look for throughout the chapter.

Chapter Exercises Each chapter contains exercises, including programming problems,
designed to test students’ knowledge and understanding of the main ideas. The exercises
also provide reinforcement for key chapter concepts. Solutions are included to allow
students to check their work immediately and correct any possible mistakes.

Case Studies Every chapter contains a number of case studies that were designed to
introduce the reader to a wide range of application scenarios.

Notes This feature provides students with helpful tips and information useful to learning
C++. Important concepts and rules are highlighted for additional emphasis and easy
access.

Hints These are informative suggestions for easier programming. Also included are
common mistakes and how to avoid making them.

Acknowledgements
Our thanks go out to everyone who helped produce this book, particularly to

Ian Travis, for his valuable contributions to the development of this book.
Alexa Doehring, who reviewed all samples and program listings, and gave many valuable
hints from the American perspective.
Michael Stranz and Amy Rose at Jones and Bartlett Publishers, who managed the pub-
lishing agreement and the production process so smoothly.
Our children, Vivi and Jeany, who left us in peace long enough to get things finished!
And now all that remains is to wish you, Dear Reader, lots of fun with C++!

Ulla Kirch-Prinz
Peter Prinz

PREFACE ■ ix

Preview from Notesale.co.uk

Page 10 of 846

The Storage Class static 202
The Specifiers auto and register 204
The Storage Classes of Functions 206
Namespaces 208
The Keyword using 210
Exercises 212
Solutions 216

Chapter 12 References and Pointers 221
Defining References 222
References as Parameters 224
References as Return Value 226
Expressions with Reference Type 228
Defining Pointers 230
The Indirection Operator 232
Pointers as Parameters 234
Exercises 236
Solutions 238

Chapter 13 Defining Classes 243
The Class Concept 244
Defining Classes 246
Defining Methods 248
Defining Objects 250
Using Objects 252
Pointers to Objects 254
Structs 256
Unions 258
Exercise 260
Solution 262

Chapter 14 Methods 265
Constructors 266
Constructor Calls 268
Destructors 270
Inline Methods 272
Access Methods 274
const Objects and Methods 276
Standard Methods 278
this Pointer 280
Passing Objects as Arguments 282
Returning Objects 284
Exercises 286
Solutions 290

xiv ■ C O N T E N T S

Preview from Notesale.co.uk

Page 15 of 846

8 ■ C H A P T E R 1 F U N D A M E N T A L S

#include <iostream>
using namespace std;

int main()
{

cout << "Enjoy yourself with C++!" << endl;
return 0;

}

■ A BEGINNER’S C++ PROGRAM

Sample program

Screen output

Enjoy yourself with C++!

Structure of function main()

Function name

What the program does
(satements)

Type of function

End of function

Beginning of
function

Function block

int main()
{

}

.

.

.

.

What the program does
(statements)

Preview from Notesale.co.uk

Page 29 of 846

A B E G I N N E R ’ S C + + P R O G R A M ■ 9

A C++ program is made up of objects with their accompanying member functions and
global functions, which do not belong to any single particular class. Each function fulfills
its own particular task and can also call other functions. You can create functions your-
self or use ready-made functions from the standard library. You will always need to write
the global function main() yourself since it has a special role to play; in fact it is the
main program.

The short programming example on the opposite page demonstrates two of the most
important elements of a C++ program. The program contains only the function main()
and displays a message.

The first line begins with the number symbol, #, which indicates that the line is
intended for the preprocessor. The preprocessor is just one step in the first translation
phase and no object code is created at this time. You can type

#include <filename>

to have the preprocessor copy the quoted file to this position in the source code. This
allows the program access to all the information contained in the header file. The header
file iostream comprises conventions for input and output streams. The word stream
indicates that the information involved will be treated as a flow of data.

Predefined names in C++ are to be found in the std (standard) namespace. The
using directive allows direct access to the names of the std namespace.

Program execution begins with the first instruction in function main(), and this is
why each C++ program must have a main function. The structure of the function is
shown on the opposite page. Apart from the fact that the name cannot be changed, this
function’s structure is not different from that of any other C++ function.

In our example the function main() contains two statements. The first statement

cout << "Enjoy yourself with C++!" << endl;

outputs the text string Enjoy yourself with C++! on the screen. The name cout
(console output) designates an object responsible for output.

The two less-than symbols, <<, indicate that characters are being “pushed” to the out-
put stream. Finally endl (end of line) causes a line feed. The statement

return 0;

terminates the function main() and also the program, returning a value of 0 as an exit
code to the calling program. It is standard practice to use the exit code 0 to indicate that
a program has terminated correctly.

Note that statements are followed by a semicolon. By the way, the shortest statement
comprises only a semicolon and does nothing.

Preview from Notesale.co.uk

Page 30 of 846

FUNDAMENTAL TYPES ■ 17

A program can use several data to solve a given problem, for example, characters, inte-
gers, or floating-point numbers. Since a computer uses different methods for processing
and saving data, the data type must be known. The type defines

1. the internal representation of the data, and

2. the amount of memory to allocate.

A number such as -1000 can be stored in either 2 or 4 bytes. When accessing the
part of memory in which the number is stored, it is important to read the correct number
of bytes. Moreover, the memory content, that is the bit sequence being read, must be
interpreted correctly as a signed integer.

The C++ compiler recognizes the fundamental types, also referred to as built-in types,
shown on the opposite page, on which all other types (vectors, pointers, classes, ...) are
based.

� The Type bool
The result of a comparison or a logical association using AND or OR is a boolean value,
which can be true or false. C++ uses the bool type to represent boolean values. An
expression of the type bool can either be true or false, where the internal value for
true will be represented as the numerical value 1 and false by a zero.

� The char and wchar_t Types
These types are used for saving character codes. A character code is an integer associated
with each character. The letter A is represented by code 65, for example. The character
set defines which code represents a certain character. When displaying characters on
screen, the applicable character codes are transmitted and the “receiver,” that is the
screen, is responsible for correctly interpreting the codes.

The C++ language does not stipulate any particular characters set, although in gen-
eral a character set that contains the ASCII code (American Standard Code for Informa-
tion Interchange) is used. This 7-bit code contains definitions for 32 control characters
(codes 0 – 31) and 96 printable characters (codes 32 – 127).

The char (character) type is used to store character codes in one byte (8 bits). This
amount of storage is sufficient for extended character sets, for example, the ANSI char-
acter set that contains the ASCII codes and additional characters such as German
umlauts.

The wchar_t (wide character type) type comprises at least 2 bytes (16 bits) and is
thus capable of storing modern Unicode characters. Unicode is a 16-bit code also used in
Windows NT and containing codes for approximately 35,000 characters in 24 languages.

Preview from Notesale.co.uk

Page 38 of 846

18 ■ C H A P T E R 2 F U N D A M E N T A L T Y P E S , C O N S T A N T S , A N D V A R I A B L E S

#include <iostream>

#include <climits> // Definition of INT_MIN, ...

using namespace std;

int main()

{

cout << "Range of types int and unsigned int"

<< endl << endl;

cout << "Type Minimum Maximum"

<< endl

<< "--"

<< endl;

cout << "int " << INT_MIN << " "

<< INT_MAX << endl;

cout << "unsigned int " << " 0 "

<< UINT_MAX << endl;

return 0;

}

■ FUNDAMENTAL TYPES (CONTINUED)

Integral types

Sample program

Type Size Range of Values (decimal)

char

unsigned char

signed char

short

unsigned short

long

unsigned long

int

unsigned int

1 byte

1 byte

1 byte

2 byte resp.

4 byte

2 byte resp.

4 byte

2 byte

2 byte

4 byte

4 byte

—128 to +127 or 0 to 255

 0 to 255

 —128 to +127

 —32768 to +32767 resp.

—2147483648 to +2147483647

 0 to 65535 resp.

 0 to 4294967295

—2147483648 to +2147483647

 0 to 4294967295

—32768 to +32767

 0 to 65535

Preview from Notesale.co.uk

Page 39 of 846

39

Using Functions and
Classes
This chapter describes how to

■ declare and call standard functions and

■ use standard classes.

This includes using standard header files. In addition, we will be working

with string variables, i.e. objects belonging to the standard class string

for the first time.

Functions and classes that you define on your own will not be

introduced until later in the book.

chapter 3
Preview from Notesale.co.uk

Page 60 of 846

40 ■ C H A P T E R 3 U S I N G F U N C T I O N S A N D C L A S S E S

■ DECLARING FUNCTIONS

Example of a function prototype

The prototype above yields the following information to the compiler:

■ func is the function name
■ the function is called with two arguments: the first argument is of type int, the

second of type double
■ the return value of the function is of type long.

Mathematical standard functions

Function name

Function type
= type of return value

Types of arguments

long func (int, double);

double sin (double);

double cos (double);

double tan (double);

double atan (double);

double cosh (double);

double sqrt (double);

double pow (double, double);

double exp (double);

double log (double);

double log10 (double);

// Sine

// Cosine

// Tangent

// Arc tangent

// Hyperbolic Cosine

// Square Root

// Power

// Exponential Function

// Natural Logarithm

// Base-ten Logarithm

Preview from Notesale.co.uk

Page 61 of 846

DECLARING FUNCTIONS ■ 41

� Declarations
Each name (identifier) occurring in a program must be known to the compiler or it will
cause an error message. That means any names apart from keywords must be declared, i.e.
introduced to the compiler, before they are used.

Each time a variable or a function is defined it is also declared. But conversely, not
every declaration needs to be a definition. If you need to use a function that has already
been introduced in a library, you must declare the function but you do not need to rede-
fine it.

� Declaring Functions
A function has a name and a type, much like a variable. The function’s type is defined by
its return value, that is, the value the function passes back to the program. In addition,
the type of arguments required by a function is important. When a function is declared,
the compiler must therefore be provided with information on

■ the name and type of the function and
■ the type of each argument.

This is also referred to as the function prototype.

Examples: int toupper(int);

double pow(double, double);

This informs the compiler that the function toupper() is of type int, i.e. its return
value is of type int, and it expects an argument of type int. The second function
pow() is of type double and two arguments of type double must be passed to the
function when it is called. The types of the arguments may be followed by names, how-
ever, the names are viewed as a comment only.

Examples: int toupper(int c);

double pow(double base, double exponent);

From the compiler’s point of view, these prototypes are equivalent to the prototypes
in the previous example. Both junctions are standard junctions.

Standard function prototypes do not need to be declared, nor should they be, as they
have already been declared in standard header files. If the header file is included in the
program’s source code by means of the #include directive, the function can be used
immediately.

Example: #include <cmath>

Following this directive, the mathematical standard functions, such as sin(), cos(),
and pow(), are available. Additional details on header files can be found later in this
chapter.

Preview from Notesale.co.uk

Page 62 of 846

EXERCISES ■ 53

Exercise 1
Create a program to calculate the square roots of the numbers

4 12.25 0.0121

and output them as shown opposite.Then read a number from the keyboard and
output the square root of this number.

To calculate the square root, use the function sqrt(), which is defined by the
following prototype in the math.h (or cmath) header file:

double sqrt(double x);

The return value of the sqrt() function is the square root of x.

Exercise 2
The program on the opposite page contains several errors! Correct the errors
and ensure that the program can be executed.

Exercise 3
Create a C++ program that defines a string containing the following character
sequence:

I have learned something new again!

and displays the length of the string on screen.
Read two lines of text from the keyboard. Concatenate the strings using " * "

to separate the two parts of the string. Output the new string on screen.

Preview from Notesale.co.uk

Page 74 of 846

62 ■ C H A P T E R 4 I N P U T A N D O U T P U T W I T H S T R E A M S

// Reads integral decimal values and
// generates octal, decimal, and hexadecimal output.

#include <iostream> // Declarations of cin, cout and
using namespace std; // manipulators oct, hex, ...

int main()
{

int number;
cout << "Please enter an integer: ";
cin >> number;
cout << uppercase // for hex-digits

<< " octal \t decimal \t hexadecimal\n "
<< oct << number << " \t "
<< dec << number << " \t "
<< hex << number << endl;

return 0;
}

■ FORMATTED OUTPUT OF INTEGERS

Manipulators formatting integers

Sample program

Manipulator Effects

Octal base

Hexadecimal base

Decimal base (by default)

Generates a + sign in non-negative numeric
output.

Generates capital letters in hexadecimal
output.

Generates non-negative numeric output
without a + sign (by default).

Generates lowercase letters in hexadecimal
output (by default).

oct

hex

dec

showpos

noshowpos

uppercase

nouppercasePreview from Notesale.co.uk

Page 83 of 846

66 ■ C H A P T E R 4 I N P U T A N D O U T P U T W I T H S T R E A M S

The manipulators setw() and setfill() are declared in the header file iomanip .

✓ NOTE

■ OUTPUT IN FIELDS

Element functions for output in fields

Manipulators for output in fields

Examples

#include <iostream> // Obligatory
#include <iomanip> // declarations
using namespace std;

1st Example: cout << '|' << setw(6) << 'X' << '|';
Output: | X| // Field width 6
2nd Example: cout << fixed << setprecision(2)

<< setw(10) << 123.4 << endl
<< "1234567890" << endl;

Output: 123.40 // Field width 10
1234567890

Method Effects

Returns the minimum field width used

Sets the minimum field width to n

Returns the fill character used

Sets the fill character to ch

int width() const;

int width(int n);

int fill() const;

int fill(int ch);

Manipulator Effects

Sets the minimum field width to n

Sets the fill character to ch

Left-aligns output in fields

Right-aligns output in fields

Left-aligns output of the sign and

right-aligns output of the numeric

value

setw(int n)

setfill(int ch)

left

right

internal

Preview from Notesale.co.uk

Page 87 of 846

70 ■ C H A P T E R 4 I N P U T A N D O U T P U T W I T H S T R E A M S

// Inputs an article label and a price

#include <iostream> // Declarations of cin, cout,...
#include <iomanip> // Manipulator setw()
#include <string>
using namespace std;

int main()
{

string label;
double price;

cout << "\nPlease enter an article label: ";

// Input the label (15 characters maximum):
cin >> setw(16); // or: cin.width(16);
cin >> label;

cin.sync(); // Clears the buffer and resets
cin.clear(); // any error flags that may be set

cout << "\nEnter the price of the article: ";
cin >> price; // Input the price

// Controlling output:
cout << fixed << setprecision(2)

<< "\nArticle:"
<< "\n Label: " << label
<< "\n Price: " << price << endl;

// ... The program to be continued

return 0;
}

The input buffer is cleared and error flags are reset by calling the sync() and clear() methods. This
ensures that the program will wait for new input for the price, even if more than 15 characters have
been entered for the label.

✓ NOTE

■ FORMATTED INPUT

Sample program

Preview from Notesale.co.uk

Page 91 of 846

FORMATTED INPUT ■ 71

The >> operator, which belongs to the istream class, takes the current number base
and field width flags into account when reading input:

■ the number base specifies whether an integer will be read as a decimal, octal, or
hexadecimal

■ the field width specifies the maximum number of characters to be read for a
string.

When reading from standard input, cin is buffered by lines. Keyboard input is thus
not read until confirmed by pressing the <Return> key. This allows the user to press the
backspace key and correct any input errors, provided the return key has not been pressed.
Input is displayed on screen by default.

� Input Fields
The >> operator will normally read the next input field, convert the input by reference to
the type of the supplied variable, and write the result to the variable. Any white space
characters (such as blanks, tabs, and new lines) are ignored by default.

Example: char ch;
cin >> ch; // Enter a character

When the following keys are pressed

<return> <tab> <blank> <X> <return>

the character 'X' is stored in the variable ch.
An input field is terminated by the first white space character or by the first character

that cannot be processed.

Example: int i;
cin >> i;

Typing 123FF<Return> stores the decimal value 123 in the variable i. However, the
characters that follow, FF and the newline character, remain in the input buffer and will
be read first during the next read operation.

When reading strings, only one word is read since the first white space character will
begin a new input field.

Example: string city;
cin >> city; // To read just one word!

If Lao Kai is input, only Lao will be written to the city string. The number of charac-
ters to be read can also be limited by specifying the field width. For a given field width of
n, a maximum of n–1 characters will be read, as one byte is required for the null charac-
ter. Any initial white space will be ignored. The program on the opposite page illustrates
this point and also shows how to clear the input buffer.

Preview from Notesale.co.uk

Page 92 of 846

FORMATTED INPUT OF NUMBERS ■ 73

� Inputting Integers
You can use the hex, oct, and dec manipulators to stipulate that any character
sequence input is to processed as a hexadecimal, octal, or decimal number.

Example: int n;
cin >> oct >> n;

An input value of 10 will be interpreted as an octal, which corresponds to a decimal
value of 8.

Example: cin >> hex >> n;

Here, any input will be interpreted as a hexadecimal, enabling input such as f0a or -F7.

� Inputting Floating-Point Numbers
The >> operator interprets any input as a decimal floating-point number if the variable is
a floating-point type, i.e. float, double, or long double. The floating-point num-
ber can be entered in fixed point or exponential notation.

Example: double x;
cin >> x;

The character input is converted to a double value in this case. Input, such as 123,
-22.0, or 3e10 is valid.

� Input Errors
But what happens if the input does not match the type of variable defined?

Example: int i, j; cin >> i >> j;

Given input of 1A5 the digit 1 will be stored in the variable i. The next input field
begins with A. But since a decimal input type is required, the input sequence will not be
processed beyond the letter A. If, as in our example, no type conversion is performed, the
variable is not written to and an internal error flag is raised.

It normally makes more sense to read numerical values individually, and clear the
input buffer and any error flags that may have been set after each entry.

Chapter 6, “Control Flow,” and Chapter 28, “Exception Handling,” show how a pro-
gram can react to input errors.

Preview from Notesale.co.uk

Page 94 of 846

ex
er
ci
se
s

76 ■ C H A P T E R 4 I N P U T A N D O U T P U T W I T H S T R E A M S

// A program with resistant mistakes

#include <iostream>
using namespace std;

int main()
{

char ch;
string word;

cin >> "Let's go! Press the return key: " >> ch;

cout << "Enter a word containing
three characters at most: ";

cin >> setprecision(3) >> word;

cout >> "Your input: " >> ch >> endl;

return 0;
}

■ EXERCISES

Screen output for exercise 3

Article Number Number of Pieces Price per piece
....... Dollar

Program listing for exercise 5

Preview from Notesale.co.uk

Page 97 of 846

EXERCISES ■ 77

The variable type defines whether a character or a number is to be read or output.

✓ TIP

Exercise 1
What output is generated by the program on the page entitled “Formatted output
of floating-point numbers” in this chapter?

Exercise 2
Formulate statements to perform the following:

a. Left-justify the number 0.123456 in an output field with a width of 15.

b. Output the number 23.987 as a fixed point number rounded to two dec-
imal places, right-justifying the output in a field with a width of 12.

c. Output the number –123.456 as an exponential and with four decimal
spaces. How useful is a field width of 10?

Exercise 3
Write a C++ program that reads an article number, a quantity, and a unit price
from the keyboard and outputs the data on screen as displayed on the opposite
page.

Exercise 4
Write a C++ program that reads any given character code (a positive integer)
from the keyboard and displays the corresponding character and the character
code as a decimal, an octal, and a hexadecimal on screen.

Why do you think the character P is output when the number 336 is entered?

Exercise 5
Correct the mistakes in the program on the opposite page.

Preview from Notesale.co.uk

Page 98 of 846

SOLUTIONS ■ 79

cout << "Number of pieces: ";
cin >> count;

cout << "Price per piece: ";
cin >> price;

// Output:
cout <<
"\n\tArticle Number Quantity Price per piece ";

cout << "\n\t"
<< setw(8) << number
<< setw(16) << count
<< fixed << setprecision(2)
<< setw(16) << price << " Dollar" << endl;

return 0;
}

Exercise 4
#include <iostream>
#include <iomanip> // Manipulator setw()
using namespace std;

int main()
{

unsigned char c = 0;
unsigned int code = 0;

cout << "\nPlease enter a decimal character code: ";
cin >> code;

c = code; // Save for output

cout << "\nThe corresponding character: " << c << endl;

code = c; // Character code. Is only
// necessary, if input is > 255.

cout << "\nCharacter codes"
<< "\n decimal: " << setw(3) << dec << code
<< "\n octal: " << setw(3) << oct << code
<< "\n hexadecimal: " << setw(3) << hex << code
<< endl;

return 0;
}

Preview from Notesale.co.uk

Page 100 of 846

82 ■ C H A P T E R 5 O P E R A T O R S F O R F U N D A M E N T A L T Y P E S

#include <iostream>
using namespace std;
int main()
{

double x, y;
cout << "\nEnter two floating-point values: ";
cin >> x >> y;
cout << "The average of the two numbers is: "

<< (x + y)/2.0 << endl;
return 0;

}

■ BINARY ARITHMETIC OPERATORS

Binary operator and operands

The binary arithmetic operators

Sample program

Sample output for the program

Enter two floating-point values: 4.75 12.3456
The average of the two numbers is: 8.5478

Operator

Left operand Right operand

a + b

+

-

*

/

%

Operator Significance

Addition

Subraction

Multiplication

Division

Remainder

Preview from Notesale.co.uk

Page 103 of 846

84 ■ C H A P T E R 5 O P E R A T O R S F O R F U N D A M E N T A L T Y P E S

#include <iostream>
using namespace std;
int main()
{

int i(2), j(8);

cout << i++ << endl; // Output: 2
cout << i << endl; // Output: 3
cout << j-- << endl; // Output: 8
cout << --j << endl; // Output: 6

return 0;
}

■ UNARY ARITHMETIC OPERATORS

The unary arithmetic operators

Precedence of arithmetic operators

Effects of prefix and postfix notation

+ -

++

--

Operator Significance

Unary sign operators

Increment operator

Decrement operator

Precedence Operator Grouping

High

Low

++ --

++ --
+ -

* / %

+
-

(postfix) left to right

left to right

left to right

right to left(prefix)

(sign)

(addition)

(subtraction)

Preview from Notesale.co.uk

Page 105 of 846

THE FOR STATEMENT ■ 99

� Initializing and Reinitializing
A typical loop uses a counter that is initialized, tested by the controlling expression and
reinitialized at the end of the loop.

Example: int count = 1; // Initialization
while(count <= 10) // Controlling
{ // expression
cout << count

<< ". loop" << endl;
++count; // Reinitialization

}

In the case of a for statement the elements that control the loop can be found in the
loop header. The above example can also be expressed as a for loop:

Example: int count;
for(count = 1; count <= 10; ++count)

cout << count
<< ". loop" << endl;

Any expression can be used to initialize and reinitialize the loop. Thus, a for loop has
the following form:

Syntax: for(expression1; expression2; expression3)
statement

expression1 is executed first and only once to initialize the loop. expression2 is
the controlling expression, which is always evaluated prior to executing the loop body:

■ if expression2 is false, the loop is terminated
■ if expression2 is true, the loop body is executed. Subsequently, the loop is

reinitialized by executing expression3 and expression2 is re-tested.

You can also define the loop counter in expression1. Doing so means that the
counter can be used within the loop, but not after leaving the loop.

Example: for(int i = 0; i < 10; cout << i++)
;

As this example illustrates, the loop body can be an empty statement. This is always the
case if the loop header contains all necessary statements. However, to improve readabil-
ity, even the empty statement should occupy a line of its own.

Preview from Notesale.co.uk

Page 120 of 846

108 ■ C H A P T E R 6 C O N T R O L F L O W

true false

expression1 expression2

expression

// greater.cpp
#include <iostream>
using namespace std;

int main()
{

float x, y;

cout << "Type two different numbers:\n";
if(!(cin >> x && cin >> y)) // If the input was
{ // invalid.

cout << "\nInvalid input!" << endl;
}
else
{

cout << "\nThe greater value is: "
<< (x > y ? x : y) << endl;

}

return 0;
}

■ CONDITIONAL EXPRESSIONS

Structogram for a conditional expression

Sample program

Sample output for this program

Type two different numbers:
173.2
216.7
The greater value is: 216.7

Preview from Notesale.co.uk

Page 129 of 846

CONDITIONAL EXPRESSIONS ■ 109

� Conditional Operator
The conditional operator ?: is used to form an expression that produces either of two
values, depending on the value of some condition. Because the value produced by such
an expression depends on the value of a condition, it is called conditional expression.

In contrast to the if-else statement the selection mechanism is based on expres-
sions: one of two possible expressions is selected. Thus, a conditional expression is often
a concise alternative to an if-else statement.

Syntax: expression ? expression1 : expression2

expression is evaluated first. If the result is true, expression1 is evaluated; if not
expression2 is executed. The value of the conditional expression is therefore either
the value of expression1 or expression2.

Example: z = (a >= 0) ? a : -a;

This statement assigns the absolute value of a to the variable z. If a has a positive value
of 12, the number 12 is assigned to z. But if a has a negative value, for example –8, the
number 8 is assigned to z.

Since this sample program stores the value of the conditional expression in the vari-
able z, the statement is equivalent to

if(a > 0)
z = a;

else
z = -a;

� Precedence
The conditional operator is the only C++ operator with three operands. Its precedence is
higher than that of the comma and assignment operators but lower than all other opera-
tors. In other words, you could omit the brackets in the first example.

You can use the result of a conditional evaluation without assigning it, as the sample
program on the opposite page shows. In this example, x is printed on screen if x is
greater than y, and y is printed otherwise.

However, you should assign the result of complex expressions to a variable explicitly
to improve the readability of your program.

Preview from Notesale.co.uk

Page 130 of 846

JUMPS WITH BREAK, CONTINUE, AND GOTO ■ 113

� break

The break statement exits from a switch or loop immediately. You can use the break
keyword to jump to the first statement that follows the switch or loop.

The program on the opposite page, which outputs a group of 20 ASCII characters and
their corresponding codes, uses the break keyword in two places. The first break exits
from an infinite while(true) { ... } loop when a maximum value of 256 has been
reached. But the user can also opt to continue or terminate the program. The second
break statement is used to terminate the while loop and hence the program.

� continue

The continue statement can be used in loops and has the opposite effect to break,
that is, the next loop is begun immediately. In the case of a while or do-while loop
the program jumps to the test expression, whereas a for loop is reinitialized.

Example: for(int i = 0; i < 100; i++)
{

. . . // Processes all integers.
if(i % 2 == 1)
continue;

. . . // Process even
// numbers only.

}

� goto and Labels
C++ also offers a goto statement and labels. This allows you to jump to any given point
marked by a label within a function. For example, you can exit from a deeply embedded
loop construction immediately.

Example: for(. . .)
for(. . .)
if (error) goto errorcheck;

. . .
errorcheck: . . . // Error handling

A label is a name followed by a colon. Labels can precede any statement.
Any program can do without goto statements. If you need to use a goto statement,

do so to exit from a code block, but avoid entering code blocks by this method.

Preview from Notesale.co.uk

Page 134 of 846

119

Symbolic Constants and
Macros
This chapter introduces you to the definition of symbolic constants and

macros illustrating their significance and use. In addition, standard macros

for character handling are introduced.

chapter 7
Preview from Notesale.co.uk

Page 140 of 846

ex
er
ci
se
s

132 ■ C H A P T E R 7 S Y M B O L I C C O N S T A N T S A N D M A C R O S

When a function key, such as F1, F2, ..., Ins, Del, etc. was pressed, the function
getch() initially returns 0. A second call yields the key number.

✓ NOTE

■ EXERCISES

Hints for Exercise 2
You can use the function kbhit() to test whether the user has pressed a key. If
so, the function getch() can be used to read the character.This avoids
interrupting the program when reading from the keyboard.

These functions have not been standardized by ANSI but are available on
almost every system. Both functions use operating system routines and are
declared in the header file conio.h.

The function kbhit()

Prototype: int kbhit();

Returns: 0, if no key was pressed, otherwise != 0.

When a key has been pressed, the corresponding character can be read by
getch().

The function getch()

Prototype: int getch();

Returns: The character code.There is no special return value on reaching
end-of-file or if an error occurs.

In contrast to cin.get(), getch() does not use an input buffer when
reading characters, that is, when a character is entered, it is passed directly to
the program and not printed on screen. Additionally, control characters, such as
return (= 13), Ctrl+Z (= 26), and Esc (= 27), are passed to the program “as is.”

Example: int c;
if(kbhit() != 0) // Key was pressed?
{

c = getch(); // Yes -> Get character
if(c == 27) // character == Esc?
// . . .

}

Preview from Notesale.co.uk

Page 153 of 846

EXERCISES ■ 133

Since the program must not immediately output a single character following a control character, you will
need to store the predecessor of this character. You may want to use two counters to count the
number of characters and control characters in the current string.

✓ NOTE

Exercise 1
Please write

a. the macro ABS, which returns the absolute value of a number,

b. the macro MAX, which determines the greater of two numbers.

In both cases use the conditional operator ?: .
Add these macros and other macros from this chapter to the header file

myMacros.h and then test the macros.
If your system supports screen control macros, also add some screen control

macros to the header. For example, you could write a macro named
COLOR(f,b) to define the foreground and background colors for the following
output.

Exercise 2
Modify the program ball1.cpp to

a. display a white ball on a blue background,

b. terminate the program when the Esc key is pressed,

c. increase the speed of the ball with the + key and decrease the speed
with the – key.

You will need the functions kbhit() and getch() (shown opposite) to solve
parts b and c of this problem.

Exercise 3
Write a filter program to display the text contained in any given file.The
program should filter any control characters out of the input with the exception
of the characters \n (end-of-line) and \t (tabulator), which are to be treated as
normal characters for the purpose of this exercise. Control characters are
defined by codes 0 to 31.

A sequence of control characters is to be represented by a single space
character.

A single character, that is, a character appearing between two control
characters, is not to be output!

Preview from Notesale.co.uk

Page 154 of 846

136 ■ C H A P T E R 7 S Y M B O L I C C O N S T A N T S A N D M A C R O S

#define ESC 27 // ESC terminates the program
unsigned long delay = 5000000; // Delay for output

int main()
{

int x = 2, y = 2, dx = 1, speed = 0;
bool end = false;
string floor(80, '-'),

header = "**** BOUNCING BALL ****",
commands = "[Esc] = Terminate "

"[+] = Speed up [-] = Slow down";

COLOR(WHITE,BLUE); CLS;
LOCATE(1,25); cout << header;
LOCATE(24,1); cout << floor;
LOCATE(25,10); cout << commands;

while(!end) // As long as the flag is not set
{
LOCATE(y,x); cout << 'o'; // Show the ball
for(long wait = 0; wait < delay; ++wait)
;

if(x == 1 || x == 79) dx = -dx; // Bounce off a wall?
if(y == 23) // On the floor?
{
speed = - speed;
if(speed == 0) speed = -7; // Kick

}
speed += 1; // Speed up = 1

LOCATE(y,x); cout << ' '; // Clear screen
y += speed; x += dx; // New position

if(kbhit() != 0) // Key pressed?
{

switch(getch()) // Yes
{
case '+': delay -= delay/5; // Speed up

break;
case '-': delay += delay/5; // Slow down

break;
case ESC: end = true; // Terminate

}
}

}
NORMAL; CLS;
return 0;

}

Preview from Notesale.co.uk

Page 157 of 846

139

Converting Arithmetic
Types
This chapter introduces implicit type conversions, which are performed in

C++ whenever different arithmetic types occur in expressions.

Additionally, an operator for explicit type conversion is introduced.

chapter 8
Preview from Notesale.co.uk

Page 160 of 846

140 ■ C H A P T E R 8 C O N V E R T I N G A R I T H M E T I C T Y P E S

■ IMPLICIT TYPE CONVERSIONS

Integer promotions

bool

short

char, signed char, unsigned char int

int

unsigned int

unsigned short

if int equals long

if int equals short

Type hierarchy

Example

short size(512); double res, x = 1.5;
res = size / 10 * x; // short -> int -> double

int

long double

double

float

unsigned long

long

unsigned int

int

not-existent, if int
equals long

Preview from Notesale.co.uk

Page 161 of 846

EXERCISES ■ 149

1. Plot one point of the curve in columns 10, 10+1, ..., 10+64 respectively. This leads to a
step value of 2*PI/64 for x.

2. Use the following extended ASCII code characters to draw the axes:

Example: cout << '\020'; // up arrowhead

✓ NOTE

Character Decimal Octal

–

+

196

197

16

30

304

305

020

036

Exercise 1
A function has the following prototype

void func(unsigned int n);

What happens when the function is called with –1 as an argument?

Exercise 2
How often is the following loop executed?

unsigned int limit = 1000;
for (int i = –1; i < limit; i++)
// . . .

Exercise 3
What is output when the program opposite is executed?

Exercise 4
Write a C++ program to output the sine curve on screen as in the graphic
shown on the opposite page.Preview from Notesale.co.uk

Page 170 of 846

SEARCHING AND REPLACING IN STRINGS ■ 163

� Searching
You can search strings to find the first or last instance of a substring. If the string con-
tains the required substring, the position of the substring found by the search is returned.
If not, a pseudo-position npos, or –1, is returned. Since the npos constant is defined in
the string class, you can reference it as string::npos.

The find() method returns the position at which a substring was first found in the
string. The method requires the substring to be located as an argument.

Example: string youth("Bill is so young, so young");
int first = youth.find("young");

The variable first has a value of 11 in this example.
You can use the “right find” method rfind() to locate the last occurrence of a sub-

string in a string. This initializes the variable last with a value of 21 in our example.

Example: int last = youth.rfind("young");

� Replacing
When replacing in strings, a string overwrites a substring. The string lengths need not be
identical.

You can use the replace() method to perform this operation. The first two argu-
ments supply the starting position and the length of the substring to be replaced. The
third argument contains the replacement string.

Example: string s1("There they go again!"),
s2("Bob and Bill");

int pos = s1.find("they"); // pos == 6
if(pos != string::npos)

s1.replace(pos, 2, s2);

This example uses the string s2 to replace 4 characters, "they", starting at position 6 in
s1. After this operation s1 contains the string "There Bob and Bill go
again!".

If you only need to insert part of a string, you can use the fourth argument to define
the starting position and the fifth to define the length of the substring.

Example: string s1("Here comes Mike!"),
s2("my love?");

s1.replace(11, 4, s2, 0, 7);

The string s1 is changed to "Here comes my love!".

Preview from Notesale.co.uk

Page 184 of 846

171

Functions
This chapter describes how to write functions of your own. Besides the

basic rules, the following topics are discussed:

■ passing arguments

■ definition of inline functions

■ overloading functions and default arguments

■ the principle of recursion.

chapter 10
Preview from Notesale.co.uk

Page 192 of 846

RETURN VALUE OF FUNCTIONS ■ 177

The program opposite shows how the function area() is defined and called. As previ-
ously mentioned, you must declare a function before calling it. The prototype provides
the compiler with all the information it needs to perform the following actions when a
function is called:

■ check the number and type of the arguments
■ correctly process the return value of the function.

A function declaration can be omitted only if the function is defined within the same
source file immediately before it is called. Even though simple examples often define and
call a function within a single source file, this tends to be an exception. Normally the
compiler will not see a function definition as it is stored in a different source file.

When a function is called, an argument of the same type as the parameter must be
passed to the function for each parameter. The arguments can be any kind of expressions,
as the example opposite with the argument y+1 shows. The value of the expression is
always copied to the corresponding parameter.

� Return Statement
When the program flow reaches a return statement or the end of a function code block, it
branches back to the function that called it. If the function is any type other than void,
the return statement will also cause the function to return a value to the function that
called it.

Syntax: return [expression]

If expression is supplied, the value of the expression will be the return value. If the
type of this value does not correspond to the function type, the function type is con-
verted, where possible. However, functions should always be written with the return
value matching the function type.

The function area() makes use of the fact that the return statement can contain
any expression. The return expression is normally placed in parentheses if it contains
operators.

If the expression in the return statement, or the return statement itself, is miss-
ing, the return value of the function is undefined and the function type must be void.
Functions of the void type, such as the standard function srand(), will perform an
action but not return any value.

Preview from Notesale.co.uk

Page 198 of 846

192 ■ C H A P T E R 1 0 F U N C T I O N S

Exercise 2
// ---
// max.cpp
// Defines and calls the overloaded functions Max().
// --

// As long as just one function Max() is defined, it can
// be called with any arguments that can be converted to
// double, i.e. with values of type char, int or long.
// After overloading no clear conversion will be possible.

#include <iostream>
#include <string>
using namespace std;

inline double Max(double x, double y)
{

return (x < y ? y : x);
}

inline char Max(char x, char y)
{

return (x < y ? y : x);
}

string header(
"To use the overloaded function Max().\n"),

line(50,'-');

int main() // Several different calls to function Max()
{

double x1 = 0.0, x2 = 0.0;

line += '\n';
cout << line << header << line << endl;

cout << "Enter two floating-point numbers:"
<< endl;

if(cin >> x1 && cin >> x2)
{

cout << "The greater number is " << Max(x1,x2)
<< endl;

}
else

cout << "Invalid input!" << endl;

cin.sync(); cin.clear(); // Invalid input
// was entered.

Preview from Notesale.co.uk

Page 213 of 846

SOLUTIONS ■ 193

cout << line
<< "And once more with characters!"
<< endl;

cout << "Enter two characters:"
<< endl;

char c1, c2;
if(cin >> c1 && cin >> c2)
{

cout << "The greater character is " << Max(c1,c2)
<< endl;

}
else

cout << "Invalid input!" << endl;

cout << "Testing with int arguments." << endl;
int a = 30, b = 50;
cout << Max(a,b) << endl; // Error! Which

// function Max()?
return 0;

}

Exercise 3
// ---
// factorial.cpp
// Computes the factorial of an integer iteratively,
// i.e. using a loop, and recursively.
// ---
#include <iostream>
#include <iomanip>
using namespace std;

#define N_MAX 20

long double fact1(unsigned int n); // Iterative solution
long double fact2(unsigned int n); // Recursive solution

int main()
{

unsigned int n;

// Outputs floating-point values without
// decimal places:
cout << fixed << setprecision(0);

Preview from Notesale.co.uk

Page 214 of 846

198 ■ C H A P T E R 1 1 S T 0 R A G E C L A S S E S A N D N A M E S P A C E S

file scope

block scope

program scope

Function

Module 1

Module 2

file scope

block scope

Function

block scope

Function

■ STORAGE CLASSES OF OBJECTS

� Availability of Objects
C++ program

� Storage Class Specifiers
The storage class of an object is determined by

■ the position of its declaration in the source file
■ the storage class specifier, which can be supplied optionally.

The following storage class specifiers can be used

extern static auto register

Preview from Notesale.co.uk

Page 219 of 846

EXERCISES ■ 213

Exercise 1
In general, you should use different names for different objects. However, if you
define a name for an object within a code block and the name is also valid for
another object, you will reference only the new object within the code block.
The new declaration hides any object using the same name outside of the block.
When you leave the code block, the original object once more becomes visible.

The program on the opposite page uses identical variable names in different
blocks.What does the program output on screen?

Exercise 2
You are developing a large-scale program and intend to use two commercial
libraries, tool1 and tool2.The names of types, functions, macros, and so on are
declared in the header files tool1.h and tool2.h for users of these libraries.

Unfortunately, the libraries use the same global names in part. In order to use
both libraries, you will need to define namespaces.
Write the following program to simulate this situation:

■ Define an inline function called calculate() that returns the sum of two
numbers for the header file tool1.h.The function interface is as follows:

double calculate(double num1, double num2);

■ Define an inline function called calculate() that returns the product of
two numbers for a second header file tool2.h.This function has the
same interface as the function in tool1.h.

■ Then write a source file containing a main function that calls both func-
tions with test values and outputs the results.

To resolve potential naming conflicts, define the namespaces TOOL1 and
TOOL2 that include the relevant header files.

Preview from Notesale.co.uk

Page 234 of 846

REFERENCES AS PARAMETERS ■ 225

� Passing by Reference
A pass by reference can be programmed using references or pointers as function parame-
ters. It is syntactically simpler to use references, although not always permissible.

A parameter of a reference type is an alias for an argument. When a function is called,
a reference parameter is initialized with the object supplied as an argument. The function
can thus directly manipulate the argument passed to it.

Example: void test(int& a) { ++a; }

Based on this definition, the statement

test(var); // For an int variable var

increments the variable var. Within the function, any access to the reference a auto-
matically accesses the supplied variable, var.

If an object is passed as an argument when passing by reference, the object is not
copied. Instead, the address of the object is passed to the function internally, allowing
the function to access the object with which it was called.

� Comparison to Passing by Value
In contrast to a normal pass by value an expression, such as a+b, cannot be used as an
argument. The argument must have an address in memory and be of the correct type.

Using references as parameters offers the following benefits:

■ arguments are not copied. In contrast to passing by value, the run time of a pro-
gram should improve, especially if the arguments occupy large amounts of mem-
ory

■ a function can use the reference parameter to return multiple values to the calling
function. Passing by value allows only one result as a return value, unless you
resort to using global variables.

If you need to read arguments, but not copy them, you can define a read-only reference
as a parameter.

Example: void display(const string& str);

The function display() contains a string as an argument. However, it does not gener-
ate a new string to which the argument string is copied. Instead, str is simply a refer-
ence to the argument. The caller can rest assured that the argument is not modified
within the function, as str is declared as a const.

Preview from Notesale.co.uk

Page 246 of 846

EXPRESSIONS WITH REFERENCE TYPE ■ 229

Every C++ expression belongs to a certain type and also has a value, if the type is not
void. Reference types are also valid for expressions.

� The Stream Class Shift Operators
The << and >> operators used for stream input and output are examples of expressions
that return a reference to an object.

Example: cout << " Good morning "

This expression is not a void type but a reference to the object cout, that is, it repre-
sents the object cout. This allows you to repeatedly use the << on the expression:

cout << "Good morning" << '!'

The expression is then equivalent to

(cout << " Good morning ") << '!'

Expressions using the << operator are composed from left to right, as you can see from
the table of precedence contained in the appendix.

Similarly, the expression cin >> variable represents the stream cin. This allows
repeated use of the >> operator.

Example: int a; double x;
cin >> a >> x; // (cin >> a) >> x;

� Other Reference Type Operators
Other commonly used reference type operators include the simple assignment operator =
and compound assignments, such as += and *=. These operators return a reference to the
operand on the left. In an expression such as

a = b or a += b

a must therefore be an object. In turn, the expression itself represents the object a. This
also applies when the operators refer to objects belonging to class types. However, the
class definition stipulates the available operators. For example, the assignment operators
= and += are available in the standard class string.

Example: string name("Jonny ");
name += "Depp"; //Reference to name

Since an expression of this type represents an object, the expression can be passed as
an argument to a function that is called by reference. This point is illustrated by the
example on the opposite page.

Preview from Notesale.co.uk

Page 250 of 846

DEFINING POINTERS ■ 231

Efficient program logic often requires access to the memory addresses used by a program’s
data, rather than manipulation of the data itself. Linked lists or trees whose elements are
generated dynamically at runtime are typical examples.

� Pointers
A pointer is an expression that represents both the address and type of another object.
Using the address operator, &, for a given object creates a pointer to that object. Given
that var is an int variable,

Example: &var // Address of the object var

is the address of the int object in memory and thus a pointer to var. A pointer points
to a memory address and simultaneously indicates by its type how the memory address
can be read or written to. Thus, depending on the type, we refer to pointers to char, point-
ers to int, and so on, or use an abbreviation, such as char pointer, int pointer, and so on.

� Pointer Variables
An expression such as &var is a constant pointer; however, C++ allows you to define
pointer variables, that is, variables that can store the address of another object.

Example: int *ptr; // or: int* ptr;

This statement defines the variable ptr, which is an int* type (in other words, a pointer
to int). ptr can thus store the address of an int variable. In a declaration, the star char-
acter * always means “pointer to.”

Pointer types are derived types. The general form is T*, where T can be any given type.
In the above example T is an int type.

Objects of the same base type T can be declared together.

Example: int a, *p, &r = a; // Definition of a, p, r

After declaring a pointer variable, you must point the pointer at a memory address. The
program on the opposite page does this using the statement

ptr = &var;.

� References and Pointers
References are similar to pointers: both refer to an object in memory. However, a pointer
is not merely an alias but an individual object that has an identity separate from the
object it references. A pointer has its own memory address and can be manipulated by
pointing it at a new memory address and thus referencing a different object.

Preview from Notesale.co.uk

Page 252 of 846

SOLUTIONS ■ 239

// Function circle(): Compute circumference and area.
void circle(const double& r, double& u, double& f)
{

const double pi = 3.1415926536;
u = 2 * pi * r;
f = pi * r * r;

}

Exercise 3
// --
// swap.cpp
// Definition and call of the function swap().
// 1. version: parameters with pointer type,
// 2. version: parameters with reference type.
// --
#include <iostream>
using namespace std;

void swap(float*, float*); // Prototypes of swap()
void swap(float&, float&);

int main()
{

float x = 11.1F;
float y = 22.2F;

cout << "x and y before swapping: "
<< x << " " << y << endl;

swap(&x, &y); // Call pointer version.

cout << "x and y after 1. swapping: "
<< x << " " << y << endl;

swap(x, y); // Call reference version.

cout << "x and y after 2. swapping: "
<< x << " " << y << endl;

return 0;
}

void swap(float *p1, float *p2) // Pointer version
{
float temp; // Temporary variable

temp = *p1; // Above call points p1
*p1 = *p2; // to x and p2 to y.
*p2 = temp;

}

Preview from Notesale.co.uk

Page 260 of 846

252 ■ C H A P T E R 1 3 D E F I N I N G C L A S S E S

// account_t.cpp
// Uses objects of class Account.
// ---

#include "Account.h"

int main()
{

Account current1, current2;

current1.init("Cheers, Mary", 1234567, -1200.99);
current1.display();

// current1.balance += 100; // Error: private member

current2 = current1; // ok: Assignment of
// objects is possible.

current2.display(); // ok

// New values for current2
current2.init("Jones, Tom", 3512347, 199.40);

current2.display();
// To use a reference:

Account& mtr = current1; // mtr is an alias name
// for object current1.

mtr.display(); // mtr can be used just
// as object current1.

return 0;
}

■ USING OBJECTS

Sample program

Preview from Notesale.co.uk

Page 273 of 846

USING OBJECTS ■ 253

� Class Member Access Operator
An application program that manipulates the objects of a class can access only the pub-
lic members of those objects. To do so, it uses the class member access operator (in short:
dot operator).

Syntax: object.member

Where member is a data member or a method.

Example: Account current;
current.init("Jones, Tom",1234567,-1200.99);

The expression current.init represents the public method init of the Account
class. This method is called with three arguments for current.

The init() call cannot be replaced by direct assignments.

Example: current.name = "Dylan, Bob"; // Error:
current.nr = 1234567; // private
current.balance = -1200.99; // members

Access to the private members of an object is not permissible outside the class. It is
therefore impossible to display single members of the Account class on screen.

Example: cout << current.balance; // Error
current.display(); // ok

The method display() displays all the data members of current. A method such as
display() can only be called for one object. The statement

display();

would result in an error message, since there is no global function called display().
What data would the function have to display?

� Assigning Objects
The assignment operator = is the only operator that is defined for all classes by default.
However, the source and target objects must both belong to the same class. The assign-
ment is performed to assign the individual data members of the source object to the cor-
responding members of the target object.

Example: Account current1, current2;
current2.init("Marley, Bob",350123, 1000.0);
current1 = current2;

This copies the data members of current2 to the corresponding members of
current1.

Preview from Notesale.co.uk

Page 274 of 846

256 ■ C H A P T E R 1 3 D E F I N I N G C L A S S E S

// structs.cpp
// Defines and uses a struct.
// ---
#include <iostream>
#include <iomanip>
#include <string>
using namespace std;
struct Representative // Defining struct Representative
{
string name; // Name of a representative.
double sales; // Sales per month.

};
inline void print(const Representative& v)
{

cout << fixed << setprecision(2)
<< left << setw(20) << v.name
<< right << setw(10) << v.sales << endl;

}
int main()
{

Representative rita, john;
rita.name = "Strom, Rita";
rita.sales = 37000.37;
john.name = "Quick, John";
john.sales = 23001.23;

rita.sales += 1700.11; // More Sales
cout << " Representative Sales\n"

<< "-------------------------------" << endl;
print(rita);
print(john);
cout << "\nTotal of sales: "

<< rita.sales + john.sales << endl;
Representative *ptr = &john; // Pointer ptr.

// Who gets the
if(john.sales < rita.sales) // most sales?
ptr = &rita;

cout << "\nSalesman of the month: "
<< ptr->name << endl; // Representative's name

// pointed to by ptr.
return 0;

}

■ structs

Sample program

Preview from Notesale.co.uk

Page 277 of 846

INLINE METHODS ■ 273

A class typically contains multiple methods that fulfill simple tasks, such as reading or
updating data members. This is the only way to ensure data encapsulation and class func-
tionality.

However, continually calling “short” methods can impact a program’s runtime. In
fact, saving a re-entry address and jumping to the called function and back into the call-
ing function can take more time than executing the function itself. To avoid this over-
head, you can define inline methods in a way similar to defining inline global
functions.

� Explicit and Implicit inline Methods
Methods can be explicitly or implicitly defined as inline. In the first case, the method
is declared within the class, just like any other method. You simply need to place the
inline keyword before the method name in the function header when defining the
method.

Example: inline void Account::display()
{

. . .
}

Since the compiler must have access to the code block of an inline function, the
inline function should be defined in the header containing the class definition.

Short methods can be defined within the class. Methods of this type are known as
implicit inline methods, although the inline keyword is not used.

Example: // Within class Account:
bool isPositive(){ return state > 0; }

� Constructors and Destructors with inline Definitions
Constructors and destructors are special methods belonging to a class and, as such, can
be defined as inline. This point is illustrated by the new definition of the Account
class opposite. The constructor and the destructor are both implicit inline. The con-
structor has a default value for each argument, which means that we also have a default
constructor. You can now define objects without supplying an initialization list.

Example: Account temp;

Although we did not explicitly supply values here, the object temp was correctly initial-
ized by the default constructor we defined.

Preview from Notesale.co.uk

Page 294 of 846

const OBJECTS AND METHODS ■ 277

� Accessing const Objects
If you define an object as const, the program can only read the object. As mentioned
earlier, the object must be initialized when you define it for this reason.

Example: const Account inv("YMCA, FL", 5555, 5000.0);

The object inv cannot be modified at a later stage. This also means that methods such
as setName() cannot be called for this object. However, methods such as getName or
display() will be similarly unavailable although they only perform read access with
the data members.

The reason for this is that the compiler cannot decide whether a method performs
write operations or only read operations with data members unless additional informa-
tion is supplied.

� Read-Only Methods
Methods that perform only read operations and that you need to call for constant objects
must be identified as read-only. To identify a method as read-only, append the const
keyword in the method declaration and in the function header for the method defini-
tion.

Example: unsigned long getNr() const;

This declares the getNr() method as a read-only method that can be used for constant
objects.

Example: cout << "Account number: " << inv.getNr();

Of course, this does not prevent you from calling a read-only method for a non-constant
object.

The compiler issues an error message if a read-only method tries to modify a data
member. This also occurs when a read-only method calls another method that is not
defined as const.

� const and Non-const Versions of a Method
Since the const keyword is part of the method’s signature, you can define two versions
of the method: a read-only version, which will be called for constant objects by default,
and a normal version, which will be called for non-const objects.

Preview from Notesale.co.uk

Page 298 of 846

278 ■ C H A P T E R 1 4 M E T H O D S

// stdMeth.cpp
// Using standard methods.
// ---
#include <iostream>
#include <iomanip>
#include <string>
using namespace std;

class CD
{ private:

string interpret, title;
long seconds; // Time duration of a song

public:
CD(const string& i="", const string& t="", long s = 0L)
{

interpret = i; title = t; seconds = s;
}
const string& getInterpret() const{ return interpret; }
const string& getTitle() const { return title; }
long getSeconds() const { return seconds; }

};
// Generate objects of class CD and output it in tabular form
void printLine(CD cd) ; // A row of the table
int main()
{

CD cd1("Mister X", "Let's dance", 30*60 + 41),
cd2("New Guitars", "Flamenco Collection", 2772),
cd3 = cd1, // Copy constructor!
cd4; // Default constructor.
cd4 = cd2; // Assignment!

string line(70,'-'); line += '\n';
cout << line << left

<< setw(20) << "Interpreter" << setw(30) << "Title"
<< "Length (Min:Sec)\n" << line << endl;

printLine(cd3); // Call by value ==>
printLine(cd4); // Copy constructor!
return 0;

}
void printLine(CD cd)
{ cout << left << setw(20) << cd.getInterpret()

<< setw(30) << cd.getTitle()
<< right << setw(5) << cd.getSeconds() / 60
<< ':' << setw(2) << cd.getSeconds() % 60 << endl;

}

■ STANDARD METHODS

Sample program

Preview from Notesale.co.uk

Page 299 of 846

292 ■ C H A P T E R 1 4 M E T H O D S

// --
// article_t.cpp
// Tests the Article class.
// --
#include "Article.h" // Definition of the class
#include <iostream>
#include <string>
using namespace std;

void test();

// -- Creates and destroys objects of Article class --
Article Article1(1111,"volley ball", 59.9);
int main()
{

cout << "\nThe first statement in main().\n" << endl;
Article Article2(2222,"gym-shoes", 199.99);
Article1.print();
Article2.print();
Article& shoes = Article2; // Another name
shoes.setNr(2233);
shoes.setName("jogging-shoes");
shoes.setSP(shoes.getSP() - 50.0);

cout << "\nThe new values of the shoes object:\n";
shoes.print();
cout << "\nThe first call to test()." << endl;
test();
cout << "\nThe second call to test()." << endl;
test();
cout << "\nThe last statement in main().\n" << endl;
return 0;

}

void test()
{

Article shirt(3333, "T-Shirt", 29.9);
shirt.print();
static Article net(4444, "volley ball net", 99.0);
net.print();
cout << "\nLast statement in function test()"

<< endl;
}

Preview from Notesale.co.uk

Page 313 of 846

294 ■ C H A P T E R 1 4 M E T H O D S

inline bool Date::isLess(const Date& d) const
{

if(year != d.year) return year < d.year;
else if(month != d.month) return month < d.month;
else return day < d.day;

}

inline bool isLeapYear(int year)
{

return (year%4 == 0 && year%100 != 0) || year%400 == 0;
}
#endif // _DATE_

// --
// Date.cpp
// Implements those methods of Date class,
// which are not defined inline.
// --
#include "Date.h" // Class definition
#include <iostream>
#include <sstream>
#include <iomanip>
#include <string>
#include <ctime>
using namespace std;

// ---
void Date::setDate() // Get the present date and
{ // assign it to the data members.

struct tm *dur; // Pointer to struct tm.
time_t sec; // For seconds.

time(&sec); // Get the present time.
dur = localtime(&sec); // Initialize a struct of

// type tm and return a
// pointer to it.

day = (short) dur->tm_mday;
month = (short) dur->tm_mon + 1;
year = (short) dur->tm_year + 1900;

}

Preview from Notesale.co.uk

Page 315 of 846

SOLUTIONS ■ 315

// ---
// article.cpp
// Methods of Article, which are not defined as inline.
// Constructor and destructor output when called.
// ---

#include "article.h" // Definition of the class

#include <iostream>
#include <iomanip>
using namespace std;

// Defining the static data member:
int Article::countObj = 0; // Number of objects

// Defining the constructor and destructor:

Article::Article(long nr, const string& name, double sp)
{

setNr(nr); setName(name); setSP(sp);
++countObj;
cout << "An article \"" << name

<< "\" is created.\n"
<< "This is the " << countObj << ". article!"
<< endl;

}
// Defining the copy constructor:
Article::Article(const Article& art)
:nr(art.nr), name(art.name), sp(art.sp)
{

++countObj;
cout << "A copy of the article \"" << name

<< "\" is generated.\n"
<< "This is the " << countObj << ". article!"
<< endl;

}

Article::~Article()
{

cout << "The article \"" << name
<< "\" is destroyed.\n"
<< "There are still " << --countObj << " articles!"
<< endl;

}

// The method print() outputs an article.
void Article::print()
{

// As before! Compare to the solutions of chapter 14.
}

Preview from Notesale.co.uk

Page 336 of 846

324 ■ C H A P T E R 1 6 A R R A Y S

// fibo.cpp
// The program computes the first 20 Fibonacci
// numbers and the corresponding Fibonacci quotients.
// ---
#include <iostream>
#include <iomanip>
#include <cmath> // Prototype of sqrt()
#include <string>
using namespace std;

#define COUNT 20

long fib[COUNT + 1] = { 0, 1 };

string header =
" Index Fibonacci number Fibonacci quotient Deviation"
"\n of limit "
"\n---";

int main()
{
int i;
double q, lim;

for(i=1; i < COUNT; ++i) // Computing the
fib[i+1] = fib[i] + fib[i-1]; // Fibonacci numbers

lim = (1.0 + sqrt(5.0)) / 2.0; // Limit

// Title and the first two Fibonacci numbers:
cout << header << endl;
cout << setw(5) << 0 << setw(15) << fib[0] << endl;
cout << setw(5) << 1 << setw(15) << fib[1] << endl;
// Rest of the table:
for(i=2; i <= COUNT; i++)
{ // Quotient:
q = (double)fib[i] / (double)fib[i-1];
cout << setw(5) << i << setw(15) << fib[i]

<< setw(20) << fixed << setprecision(10) << q
<< setw(20) << scientific << setprecision(3)
<< lim - q << endl;

}
return 0;

}

■ INITIALIZING ARRAYS

Sample program

Preview from Notesale.co.uk

Page 345 of 846

so
lu
ti
on
s

338 ■ C H A P T E R 1 6 A R R A Y S

■ SOLUTIONS

Exercise 1
// ---
// bubble.cpp
// Inputs integers into an array,
// sorts in ascending order, and outputs them.
// ---
#include <iostream>
#include <iomanip>
using namespace std;

#define MAX 100 // Maximum number
long number[MAX];

int main()
{

int i, cnt; // Index, quantity

cout << "\nS o r t i n g I n t e g e r s \n"
<< endl;

// To input the integers:
cout << "Enter up to 100 integers \n"

<< "(Quit with any letter):" << endl;
for(i = 0; i < MAX && cin >> number[i]; ++i)

;
cnt = i;
// To sort the numbers:
bool sorted = false; // Not yet sorted.
long help; // Swap.
int end = cnt; // End of a loop.

while(!sorted) // As long as not
{ // yet sorted.
sorted = true;
--end;
for(i = 0; i < end; ++i) // Compares
{ // adjacent integers.
if(number[i] > number[i+1])
{

sorted = false; // Not yet sorted.
help = number[i]; // Swap.
number[i] = number[i+1];
number[i+1]= help;

}
}

}

Preview from Notesale.co.uk

Page 359 of 846

SOLUTIONS ■ 347

inline void go_on()
{

cout << "\n\nGo on with return! ";
cin.sync(); cin.clear(); // No previous input
while(cin.get() != '\n')

;
}

int menu(); // Reads a command

char header[] =
"\n\n ***** Telephone List *****\n\n";

TelList myFriends; // A telephone list

int main()
{
int action = 0; // Command
string name; // Reads a name

myFriends.append("Lucky, Peter", "0203-1234567");

while(action != 'B')
{
action = menu();
cls();
cout << header << endl;

switch(action)
{
case 'D': // Show all

myFriends.print();
go_on();
break;

case 'F': // Search
cout <<
"\n--- To search for a phone number ---\n"
"\nEnter the beginning of a name: ";
getline(cin, name);
if(!name.empty())
{
myFriends.print(name);
go_on();

}
break;

case 'A': // Insert
myFriends.getNewEntries();
break;

Preview from Notesale.co.uk

Page 368 of 846

350 ■ C H A P T E R 1 7 A R R A Y S A N D P O I N T E R S

// textPtr.cpp
// Using arrays of char and pointers to char
// ---
#include <iostream>
using namespace std;

int main()
{

cout << "Demonstrating arrays of char "
<< "and pointers to char.\n"
<< endl;

char text[] = "Good morning!",
name[] = "Bill!";

char *cPtr = "Hello "; // Let cPtr point
// to "Hello ".

cout << cPtr << name << '\n'
<< text << endl;

cout << "The text \"" << text
<< "\" starts at address " << (void*)text
<< endl;

cout << text + 6 // What happens now?
<< endl;

cPtr = name; // Let cPtr point to name, i.e. *cPtr
// is equivalent to name[0]

cout << "This is the " << *cPtr << " of " << cPtr
<< endl;

*cPtr = 'k';
cout << "Bill can not " << cPtr << "!\n" << endl;
return 0;

}

■ ARRAYS AND POINTERS (1)

Sample program

Sample output:

Demonstrating arrays of char and pointers to char.
Hello Bill!
Good morning!
The text "Good morning!" starts at address 00451E40
morning!
This is the B of Bill!
Bill can not kill!

Preview from Notesale.co.uk

Page 371 of 846

POINTER ARITHMETIC ■ 355

In C++ you can perform arithmetic operations and comparisons with pointers, provided
they make sense. This primarily means that the pointer must always point to the ele-
ments of an array. The following examples show some of your options with pointer arith-
metic:

Example: float v[6], *pv = v; // pv points to v[0]
int i = 3;

� Moving a Pointer in an Array
As you already know, the addition pv + i results in a pointer to the array element
v[i]. You can use a statement such as pv = pv + i; to store the pointer in the vari-
able pv. This moves the pointer pv i objects, that is, pv now points to v[i].

You can also use the operators ++, --, and += or -= with pointer variables. Some
examples are shown opposite. Please note that the indirection operator, *, and the oper-
ators ++ and -- have the same precedence. Operators and operands thus are grouped
from right to left:

Example: *pv++ is equivalent to *(pv++)

The ++ operator increments the pointer and not the variable referenced by the pointer.
Operations of this type are not possible using the pointer v since v is a constant.

� Subtracting Pointers
An addition performed with two pointers does not return anything useful and is there-
fore invalid. However, it does make sense to perform a subtraction with two pointers,
resulting in an int value that represents the number of array elements between the
pointers. You can use this technique to compute the index of an array element refer-
enced by a pointer. To do so, you simply subtract the starting address of the array. For
example, if pv points to the array element v[3], you can use the following statement

Example: int index = pv - v;

to assign a value of 3 to the variable index.

� Comparing Pointers
Finally, comparisons can be performed with two pointers of the same type.

Example: for(pv = v + 5; pv >= v; --pv)
cout << setw(10) << *pv;

This loop outputs the numbers contained in v in reverse order. In the example on the
opposite page, the pointer aPtr walks through the first cnt elements of the array
accountTab, as long as aPtr < accountTab + cnt.

Preview from Notesale.co.uk

Page 376 of 846

POINTER VERSIONS OF FUNCTIONS ■ 359

� Using Pointers Instead of Indices
As we have already seen, a parameter for an array argument is always a pointer to the
first array element. When declaring parameters for a given type T:

T name[] is always equivalent to T *name.

So far, in previous sample functions, the pointer has been used like a fixed base
address for the array, with an index being used to access the individual array elements.
However, it is possible to use pointers instead of indices.

Example: A new version of the standard function strlen():
int strlen(char *str) // Computes length
{ // of str without '\0'.

char* p = str;
for(p = str; *p != '\0'; ++p) // Search
; // for \0

return (p - str);
}

In this case, the difference between two pointers results in the string length.

� The Sample Functions Opposite
The first version of the function strcpy() “string copy” opposite uses an index,
whereas the second does not. Both versions produce the same results: the string s2 is
copied to s1. When you call the function, you must ensure that the char array refer-
enced by s1 is large enough.

As the parameters s1 and s2 are pointer variables, they can be shifted. The second
“pointer version” of strcpy(), which is also shown opposite, uses this feature, although
the function interface remains unchanged.

Generally, pointer versions are preferable to index versions as they are quicker. In an
expression such as s1[i] the values of the variables s1 and i are read and added to
compute the address of the current object, whereas s1 in the pointer version already
contains the required address.

� Multidimensional Arrays as Parameters
In a parameter declaration for multidimensional arrays, you need to state every dimension
with the exception of the first. Thus, a parameter declaration for a two-dimensional array
will always contain the number of columns.

Example: long func(int num[][10]); // ok.
long func(int *num[10]); // also ok.

Preview from Notesale.co.uk

Page 380 of 846

378 ■ C H A P T E R 1 7 A R R A Y S A N D P O I N T E R S

int main()
{

cout << "Testing the function matrixsum().\n"
<< endl;

// Compute sums:
int totalsum =

matrixsum(matrix, 3, rowsum, colsum);

// Output matrix and sums:
cout << "The matrix with the sums "

<< "of rows and columns:\n"
<< endl;

int i,j;
for(i = 0 ; i < 3 ; ++i) // Output rows of the
{ // matrix with row sums.
for(j = 0 ; j < 5 ; ++j)
cout << setw(8) << matrix[i][j];

cout << " | " << setw(8) << rowsum[i] << endl;
}
cout << " ---"

<< endl;
for(j = 0 ; j < 5 ; ++j)
cout << setw(8) << colsum[j];

cout << " | " << setw(8) << totalsum << endl;
return 0;

}

// --
int matrixsum(int v[][5], int len,

int rsum[], int csum[])
{ int ro, co; // Row and column index

for(ro = 0 ; ro < len ; ++ro) // To compute row sums
{

rsum[ro] = 0;
for(co = 0 ; co < 5 ; ++co)
rsum[ro] += v[ro][co];

}
for(co = 0 ; co < 5 ; ++co) // Compute column sums
{

csum[co] = 0;
for(ro = 0 ; ro < len ; ++ro)
csum[co] += v[ro][co];

}
return (rsum[0] + rsum[1] + rsum[2]); // Total sum =

} // sum of row sums.

Preview from Notesale.co.uk

Page 399 of 846

384 ■ C H A P T E R 1 8 F U N D A M E N T A L S O F F I L E I N P U T A N D O U T P U T

// showfile.cpp
// Reads a text file and outputs it in pages,
// i.e. 20 lines per page.
// Call: showfile filename
// --
#include <iostream>
#include <fstream>
using namespace std;

int main(int argc, char *argv[])
{

if(argc != 2) // File declared?
{

cerr << "Use: showfile filename" << endl;
return 1;

}
ifstream file(argv[1]); // Create a file stream

// and open for reading.
if(!file) // Get status.
{
cerr << "An error occurred when opening the file "

<< argv[1] << endl;
return 2;

}

char line[80];
int cnt = 0;
while(file.getline(line, 80)) // Copy the file
{ // to standard
cout << line << endl; // output.
if(++cnt == 20)
{
cnt = 0;
cout << "\n\t ---- <return> to continue ---- "

<< endl;
cin.sync(); cin.get();

}
}
if(!file.eof()) // End-of-file occurred?
{
cerr << "Error reading the file "

<< argv[1] << endl;
return 3;

}
return 0;

}

■ CREATING FILE STREAMS

Sample program

Preview from Notesale.co.uk

Page 405 of 846

392 ■ C H A P T E R 1 8 F U N D A M E N T A L S O F F I L E I N P U T A N D O U T P U T

// Class Account with methods read() and write()
// ---
class Account
{

private:
string name; // Account holder
unsigned long nr; // Account number
double balance; // Balance of account

public:
. . . // Constructors, destructor,

// access methods, ...
ostream& Account::write(ostream& os) const;
istream& Account::read(istream& is)

};

// write() outputs an account into the given stream os.
// Returns: The given stream.
ostream& Account::write(ostream& os) const
{

os << name << '\0'; // To write a string
os.write((char*)&nr, sizeof(nr));
os.write((char*)&balance, sizeof(balance));
return os;

}

// read() is the opposite function of write().
// read() inputs an account from the stream is
// and writes it into the members of the current object

istream& Account::read(istream& is)
{

getline(is, name, '\0'); // Read a string
is.read((char*)&nr, sizeof(nr));
is.read((char*)&balance, sizeof(balance));
return is;

}

■ OBJECT PERSISTENCE

Class Account

Implementing methods read() and write()Preview from Notesale.co.uk

Page 413 of 846

ex
er
ci
se
s

394 ■ C H A P T E R 1 8 F U N D A M E N T A L S O F F I L E I N P U T A N D O U T P U T

fcopy file1 file2

A file, file1, is copied to file2. If file2 already exists, it is overwritten.

fcopy file1

A file, file1, is copied to standard output, that is, to the screen if
standard output has not been redirected.

fcopy

For calls without arguments, the source and destination files are entered
in a user dialog.

If is is a file stream that references a file opened for reading, the
following call

Example: char buf[1024];

is.read(buf, 1024);

transfers the next 1024 bytes from file to the buffer buf. Provided that no
error occurs, no less than 1024 bytes will be copied unless end-of-file is
reached. In this case the fail and eof bits are set.The last block of bytes
to be read also has to be written to the destination file.The method
gcount() returns the number of bytes transferred by the last read
operation.

Example: int nread = is.gcount(); // Number of bytes

// in last read op.

■ EXERCISES

For exercise 1
Possible calls to the program fcopy:

More details on the istream class method read()

Preview from Notesale.co.uk

Page 415 of 846

EXERCISES ■ 397

Exercise 4
The program TelList, which was written as an exercise for Chapter 16, needs
to be modified to allow telephone lists to be saved in a file.

To allow this, first add the data members and methods detailed on the
opposite page to TelList.The string filename is used to store the name of
the file in use.The dirty flag is raised to indicate that the phone list has been
changed but not saved.You will need to modify the existing methods append()
and erase()to provide this functionality.

The strings in the phone list must be saved as C strings in a binary file,
allowing for entries that contain several lines.

Add the following items to the application program menu:

O = Open a file

Read a phone list previously stored in a file.

W = Save

Save the current phone list in a file.

U = Save as . . .

Save the current phone list in a new file.

Choosing one of these menu items calls one of the following methods as
applicable: load(), save() or saveAs().These methods return true for a
successful action and false otherwise.The user must be able to supply a file
name for the save() method, as the list may not have been read from a file
previously.

If the phone list has been modified but not saved, the user should be
prompted to save the current phone list before opening another file or
terminating the program.

Preview from Notesale.co.uk

Page 418 of 846

406 ■ C H A P T E R 1 8 F U N D A M E N T A L S O F F I L E I N P U T A N D O U T P U T

bool TelList::append(const string& name,
const string& telNr)

{
if(count < MAX // Any space

&& name.length() > 1 // minimum 2 characters
&& search(name) == PSEUDO) // does not exist

{
v[count].name = name;
v[count].telNr = telNr;
++count;
dirty = true;
return true;

}
return false;

}

bool TelList::erase(const string& key)
{

int i = search(key);
if(i != PSEUDO)
{
if(i != count-1) // Copy the last element

v[i] = v[count-1]; // to position i.
--count;
dirty = true;
return true;

}
return false;

}
// --
// Methods search(), print(), getNewEntries()
// are unchanged (refer to solutions of chapter 16).
// --

// Methods for loading and saving the telephone list.

bool TelList::load()
{

cout << "\n--- Load the telephone list "
<< "from a file. ---" << "\nFile: ";

string file; // Input file name.
cin.sync(); cin.clear(); // No previous input
getline(cin, file);
if(file.empty())
{

cerr << "No filename declared!" << endl;
return false;

}

Preview from Notesale.co.uk

Page 427 of 846

SOLUTIONS ■ 409

inline void go_on()
{

cout << "\n\nGo on with return! ";
cin.sync(); cin.clear(); // No previous input
while(cin.get() != '\n')

;
}
int menu(); // Enter a command
char askForSave(); // Prompt user to save.
char header[] =
"\n\n * * * * * Telephone List * * * * *\n\n";
TelList myFriends; // A telephone list

int main()
{
int action = 0; // Command
string name; // Read a name
while(action != 'Q')
{
action = menu();
cls(); cout << header << endl;
switch(action)
{

// ---
// case 'S': case 'F': case 'A': case 'D':
// unchanged (refer to the solutions of chapter 16).
// ---

case 'O': // To open a file
if(myFriends.isDirty() && askForSave() == 'y')

myFriends.save();
if(myFriends.load())

cout << "Telephone list read from file "
<< myFriends.getFilename() <<"!"
<< endl;

else
cerr << "Telephone list not read!"

<< endl;
go_on();
break;

case 'U': // Save as ...
if(myFriends.saveAs())
cout << "Telephone list has been saved in file: "

<< myFriends.getFilename() << " !" <<endl;
else

cerr << "Telephone list not saved!" << endl;
go_on();
break;

Preview from Notesale.co.uk

Page 430 of 846

414 ■ C H A P T E R 1 9 O V E R L O A D I N G O P E R A T O R S

// DayTime.h
// The class DayTime containing operators < and ++ .
// ---
#ifndef _DAYTIME_
#define _DAYTIME_
class DayTime
{
private:

short hour, minute, second;
bool overflow;

public:
DayTime(int h = 0, int m = 0, int s = 0);
bool setTime(int hour, int minute, int second = 0);
int getHour() const { return hour; }
int getMinute() const { return minute; }
int getSecond() const { return second; }
int asSeconds() const // Daytime in seconds
{ return (60*60*hour + 60*minute + second); }
bool operator<(const DayTime& t) const // compare
{ // *this and t
return asSeconds() < t.asSeconds();

}
DayTime& operator++() // Increment seconds
{

++second; // and handle overflow.
return *this;

}
void print() const;

};
#endif // _DAYTIME_

#include "DayTime.h"
. . .
DayTime depart1(11, 11, 11), depart2(12,0,0);
. . .
if(depart1 < depart2)
cout << "\nThe 1st plane takes off earlier!" << endl;

. . .

■ OPERATOR FUNCTIONS (1)

Operators < and ++ for class DayTime

Calling the Operator <

Preview from Notesale.co.uk

Page 435 of 846

OPERATOR FUNCTIONS (1) ■ 415

� Naming Operator Functions
To overload an operator, you just define an appropriate operator function. The operator
function describes the actions to be performed by the operator. The name of an operator
function must begin with the operator keyword followed by the operator symbol.

Example: operator+

This is the name of the operator function for the + operator.
An operator function can be defined as a global function or as a class method. Gener-

ally, operator functions are defined as methods, especially in the case of unary operators.
However, it can make sense to define an operator function globally. This point will be
illustrated later.

� Operator Functions as Methods
If you define the operator function of a binary operator as a method, the left operand will
always be an object of the class in question. The operator function is called for this
object. The second, right operand is passed as an argument to the method. The method
thus has a single parameter.

Example: bool operator<(const DayTime& t) const;

In this case the lesser than operator is overloaded to compare two DayTime objects. It
replaces the method isLess(), which was formerly defined for this class.

The prefix operator ++ has been overloaded in the example on the opposite page to
illustrate overloading unary operators. The corresponding operator function in this class
has no parameters. The function is called if the object a in the expression ++a is an
object of class DayTime.

� Calling an Operator Function
The example opposite compares two times of day:

Example: depart1 < depart2

The compiler will attempt to locate an applicable operator function for this expression
and then call the function. The expression is thus equivalent to

depart1.operator<(depart2)

Although somewhat uncommon, you can call an operator function explicitly. The previ-
ous function call is therefore technically correct.

Programs that use operators are easier to encode and read. However, you should be
aware of the fact that an operator function should perform a similar operation to the cor-
responding operator for the fundamental type. Any other use can lead to confusion.

Preview from Notesale.co.uk

Page 436 of 846

USING OVERLOADED OPERATORS ■ 419

� Calling Operator Functions
The following expressions are valid for the operators in the Euro class.

Example: Euro wholesale(15,30), retail,
profit(7,50), discount(1,75);

retail = wholesale + profit;
// Call: wholesale.operator+(profit)
retail -= discount;
// Call: retail.operator-=(discount)
retail += Euro(1.49);
// Call: retail.operator+=(Euro(1.49))

These expressions contain only Euro type objects, for which operator functions have
been defined. However, you can also add or subtract int or double types. This is made
possible by the Euro constructors, which create Euro objects from int or double
types. This allows a function that expects a Euro value as argument to process int or
double values.

As the program opposite shows, the statement

Example: retail += 9.49;

is valid. The compiler attempts to locate an operator function that is defined for both the
Euro object and the double type for +=. Since there is no operator function with
these characteristics, the compiler converts the double value to Euro and calls the
existing operator function for euros.

� Symmetry of Operands
The available constructors also allow you to call the operator functions of + and – with
int or double type arguments.

Example: retail = wholesale + 10; // ok
wholesale = retail - 7.99; // ok

The first statement is equivalent to

retail = wholesale.operator+(Euro(10));

But the following statement is invalid!

Example: retail = 10 + wholesale; // wrong!

Since the operator function was defined as a method, the left operand must be a class
object. Thus, you cannot simply exchange the operands of the operator +. However, if
you want to convert both operands, you will need global definitions for the operator
functions.

Preview from Notesale.co.uk

Page 440 of 846

422 ■ C H A P T E R 1 9 O V E R L O A D I N G O P E R A T O R S

// Euro.h
// The class Euro with operator functions
// declared as friend functions.
// ---
#ifndef _EURO_H_
#define _EURO_H_
//
class Euro
{
private:
long data; // Euros * 100 + Cents
public:
// Constructors and other methods as before.
// Operators -(unary), +=, -= as before.
// Division Euro / double :
Euro operator/(double x) // Division *this/x
{ // = *this * (1/x)

return (*this * (1.0/x));
}
// Global friend functions
friend Euro operator+(const Euro& e1, const Euro& e2);
friend Euro operator-(const Euro& e1, const Euro& e2);
friend Euro operator*(const Euro& e, double x)
{

Euro temp(((double)e.data/100.0) * x) ;
return temp;

}
friend Euro operator*(double x, const Euro& e)
{

return e * x;
}

};
// Addition:
inline Euro operator+(const Euro& e1, const Euro& e2)
{

Euro temp; temp.data = e1.data + e2.data;
return temp;

}
// Subtraction:
inline Euro operator-(const Euro& e1, const Euro& e2)
{

Euro temp; temp.data = e1.data - e2.data;
return temp;

}
#endif // _EURO_H_

■ FRIEND FUNCTIONS

Class Euro with friend functions

Preview from Notesale.co.uk

Page 443 of 846

OVERLOADING SHIFT-OPERATORS FOR I /O ■ 429

When outputting a Euro class object, price, on screen, the following output statement
causes a compiler error:

Example: cout << price;

cout can only send objects to standard output if an output function has been defined for
the type in question—and this, of course, is not the case for user-defined classes.

However, the compiler can process the previous statement if it can locate a suitable
operator function, operator<<(). To allow for the previous statement, you therefore
need to define a corresponding function.

� Overloading the << Operator
In the previous example, the left operand of << is the object cout, which belongs to the
ostream class. Since the standard class ostream should not be modified, it is necessary
to define a global operator function with two parameters. The right operand is a Euro
class object. Thus the following prototype applies for the operator function:

Prototype: ostream& operator<<(ostream& os, const Euro& e);

The return value of the operator function is a reference to ostream. This allows for nor-
mal concatenation of operators.

Example: cout << price << endl;

� Overloading the >> Operator
The >> operator is overloaded for input to allow for the following statements.

Example: cout << "Enter the price in Euros: "
cin >> price;

The second statement causes the following call:

operator>>(cin, price);

As cin is an object of the standard istream class, the first parameter of the operator
function is declared as a reference to istream. The second parameter is again a refer-
ence to Euro.

The header file Euro.h contains only the declarations of << and >>. To allow these
functions to access the private members of the Euro class, you can add a friend decla-
ration within the class. However, this is not necessary for the current example.

Preview from Notesale.co.uk

Page 450 of 846

EXERCISES ■ 431

Exercise 1
The < and ++ operators for the sample class DayTime were overloaded at the
beginning of this chapter. Now modify the class as follows:

■ Overload the relational operators
< > <= >= == and !=

and the shift operators

>> and << for input and output

using global operator functions.You can define these inline in the
header file.

■ Then overload both the prefix and postfix versions of the ++ and --

operators.The operator functions are methods of the class.The -- oper-
ator decrements the time by one second.The time is not decremented
after reaching 0:0:0.

■ Write a main function that executes all the overloaded operators and dis-
plays their results.

Exercise 2
You are to develop a class that represents fractions and performs typical
arithmetic operations with them.

■ Use a header file called fraction.h to define the Fraction class with a
numerator and a denominator of type long.The constructor has two
parameters of type long: the first parameter (numerator) contains the
default value 0, and the second parameter (denominator) contains the
value 1. Declare operator functions as methods for - (unary), ++ and --

(prefix only), +=, -=, *=, and /=.The operator functions of the binary
operators +, -, *, / and the input / output operators <<, >> are to be
declared as friend functions of the Fraction class.

■ Implement the constructor for the Fraction class to obtain a positive
value for the denominator at all times. If the denominator assumes a value
of 0, issue an error message and terminate the program.Then write the
operator functions.The formulae for arithmetic operations are shown
opposite.

■ Then write a main function that calls all the operators in the Fraction
class as a test application. Output both the operands and the results.

Preview from Notesale.co.uk

Page 452 of 846

EXERCISE ■ 449

Exercise
Enhance the numerical class Fraction, which you know from the last chapter, to
convert both double values to fractions and fractions to double. In addition,
fractions should be rounded after arithmetic operations.

■ First declare the simplify() method for the Fraction class and insert
the definition on the opposite page in your source code.The method
computes the largest common divisor of numerator and denominator.
The numerator and the denominator are then divided by this value.

■ Add an appropriate call to the simplify() function to all operator func-
tions (except ++ and --).

■ Then add a conversion constructor with a double type parameter to the
class.

Example: Fraction b(0.5); // yields the fraction 1/2

Double values should be converted to fractions with an accuracy of three
decimal places.The following technique should suffice for numbers below
one million. Multiply the double value by 1000 and add 0.5 for rounding.
Assign the result to the numerator. Set the value of the denominator to
1000.Then proceed to simplify the fraction.

■ You now have a conversion constructor for long and double types.To
allow for conversion of int values to fractions, you must write your own
conversion constructor for int!

■ Now modify the class to allow conversion of a fraction to a double type
number. Define the appropriate conversion function inline.

Use the function main() to test various type conversions. More specifically, use
assignments and arithmetic functions to do so.Also compute the sum of a
fraction and a floating-point number.

Output the operands and the results on screen.

Preview from Notesale.co.uk

Page 470 of 846

SOLUTION ■ 451

// --
// Fraction.cpp
// Defines methods and friend functions
// that are not inline.
// --

#include <iostream.h>
#include <stdlib.h>
#include "Fraction.h"

// Constructors:
Fraction::Fraction(long z, long n)
{

// Unchanged! Same as in Chapter 19.
}

Fraction::Fraction(double x)
{

x *= 1000.0;
x += (x>=0.0) ? 0.5 : -0.5; // Round the 4th digit.
numerator = (long)x;
denominator = 1000;
simplify();

}

Fraction operator+(const Fraction& a, const Fraction& b)
{

Fraction temp;

temp.denominator = a.denominator * b.denominator;
temp.numerator = a.numerator*b.denominator

+ b.numerator * a.denominator;
temp.simplify();
return temp;

}

// The functions
// operator-() operator<<() operator>>()
// are left unchanged.

// The functions
// operator*() and operator/()
// are completed by a call to temp.simplify()
// just like the function operator+().
//

// The code of method Fraction::simplify(), as
// specified in the exercise, should be here.

Preview from Notesale.co.uk

Page 472 of 846

458 ■ C H A P T E R 2 1 D Y N A M I C M E M O R Y A L L O C A T I O N

// DynObj.cpp
// The operators new and delete for classes.
// ---
#include "account.h"
#include <iostream>
using namespace std;

Account *clone(const Account* pK); // Create a copy
// dynamically.

int main()
{

cout << "Dynamically created objects.\n" << endl;

// To allocate storage:
Account *ptrA1, *ptrA2, *ptrA3;

ptrA1 = new Account; // With default constructor
ptrA1->display(); // Show default values.

ptrA1->setNr(302010); // Set the other
ptrA1->setName("Tang, Ming"); // values by access
ptrA1->setStand(2345.87); // methods.
ptrA1->display(); // Show new values.

// Use the constructor with three arguments:
ptrA2 = new Account("Xiang, Zhang", 7531357, 999.99);
ptrA2->display(); // Display new account.

ptrA3 = clone(ptrA1); // Pointer to a dyna-
// mically created copy.

cout << "Copy of the first account: " << endl;
ptrA3->display(); // Display the copy.

delete ptrA1; // Release memory
delete ptrA2;
delete ptrA3;

return 0;
}

Account *clone(const Account* pK) // Create a copy
{ // dynamically.

return new Account(*pK);
}

■ DYNAMIC STORAGE ALLOCATION FOR CLASSES

Sample program

Preview from Notesale.co.uk

Page 479 of 846

462 ■ C H A P T E R 2 1 D Y N A M I C M E M O R Y A L L O C A T I O N

first last

1st element 2nd element 3rd element

Info Info Info

first

New last
element

last

1st element 2nd element 3rd element

Info Info

Info

Info

■ APPLICATION: LINKED LISTS

A simple linked list

Appending a list element

Deleting a list element

first

Removed
element

New first
element

New second
element

Info Info InfoInfo

Preview from Notesale.co.uk

Page 483 of 846

464 ■ C H A P T E R 2 1 D Y N A M I C M E M O R Y A L L O C A T I O N

// List.h
// Defines the classes ListEl and List.
// ---
#ifndef _LISTE_H_
#define _LISTE_H_
#include "Date.h" // Class Date from Chapter 14
#include <iostream>
#include <iomanip>
using namespace std;

class ListEl // A list element.
{
private:
Date date; // Date
double amount; // Amount of money
ListEl* next; // Pointer to successor

public:
ListEl(Date d = Date(1,1,1), double b = 0.0,

ListEl* p = NULL)
: date(d), amount(b), next(p) {}

// Access methods:
// getDate(), setDate(), getAmount(), setAmount()
ListEl* getNext() const { return next; }
friend class List;

};

// --
// Defining the class List
class List
{
private:
ListEl* first, *last;

public:
List(){ first = last = NULL; } // Constructor
~List(); // Destructor
// Access to the first and last elements:
ListEl* front() const { return first; }
ListEl* back() const { return last; }
// Append a new element at the end of the list:
void pushBack(const Date& d, double b);
// Delete an element at the beginning of the list
void popFront();

};
#endif // _LIST_H_

■ REPRESENTING A LINKED LIST

Classes of header file List.h

Preview from Notesale.co.uk

Page 485 of 846

EXERCISES ■ 467

Exercise 1
Write a global function called splice() that “splices” two int arrays together
by first allocating memory for a dynamic array with enough room for both int
arrays, and then copying the elements from both arrays to the new array, as
follows:

■ first, the elements of the first array are inserted up to a given position,
■ then the second array is inserted,

■ then the remainder of the first array is appended.

Arguments: The two int arrays, their length, and the position at which
they are to be spliced.

Return value: A pointer to the new array

Exercise 2
Write a global function called merge() that merges two sorted int arrays by
first allocating memory for a dynamic array with enough room for both int
arrays and then inserting the elements of both arrays into the new array in
sequence.

Arguments: The two int arrays and their length.
Return value: A pointer to the new array

To test the function, modify the program used to sort arrays in Exercise 4 of
Chapter 17.

Exercise 3
Complete and test the implementation of a linked list found in this chapter.

■ First define the access methods shown opposite.Then overload the <<
operator for the class ListEl to allow formatted output of the data in
the list elements.You can use the asString() in the date class to do so.

■ Then implement the destructor for the List class.The destructor will
release the memory used by all the remaining elements. Make sure that
you read the pointer to the successor of each element before destroying
it!

■ Implement the methods pushBack() and popFront() used for append-
ing and deleting list elements.

■ Overload the operator << in the List class to output all the data stored
in the list.

■ Test the List class by inserting and deleting several list elements and
repeatedly outputting the list.

Preview from Notesale.co.uk

Page 488 of 846

so
lu
ti
on
s

468 ■ C H A P T E R 2 1 D Y N A M I C M E M O R Y A L L O C A T I O N

■ SOLUTIONS

Exercise 1
// --
// Splice.cpp
// Implements the splice algorithm.
// --
#include <iostream>
#include <iomanip>
#include <cstdlib> // For srand() and rand()
#include <ctime> // and for time().
using namespace std;

// Prototype:
int *splice(int v1[], int len1,

int v2[], int len2, int pos);

int main()
{

cout << "\n * * * Testing the splice function * * *\n"
<< endl;

int i, len1 = 10, len2 = 5;
int *a1 = new int[len1],

*a2 = new int[len2];
// Initialize the random number generator
// with the current time:
srand((unsigned)time(NULL));

for(i=0; i < len1; ++i) // Initialize the arrays:
a1[i] = rand(); // with positive and

for(i=0; i < len2; ++i)
a2[i] = -rand(); // negative numbers.

// To output the array:
cout << "1. array: " << endl;
for(i = 0; i < len1; ++i)

cout << setw(12) << a1[i];
cout << endl;
cout << "2. array: " << endl;
for(i = 0; i < len2; ++i)

cout << setw(12) << a2[i];
cout << endl;
cout << "\n At what position do you want to insert "

"\n the 2nd array into 1st array?"
"\n Possible positions: 0, 1, ..., " << len1

<< " : ";

int pos; cin >> pos;

Preview from Notesale.co.uk

Page 489 of 846

MEMBERS OF VARYING LENGTH ■ 479

� Dynamic Members
You can exploit the potential of dynamic memory allocation to leverage existing classes
and create data members of variable length. Depending on the amount of data an appli-
cation program really has to handle, memory is allocated as required while the applica-
tion is running. In order to do this the class needs a pointer to the dynamically allocated
memory that contains the actual data. Data members of this kind are also known as
dynamic members of a class.

When compiling a program that contains arrays, you will probably not know how
many elements the array will need to store. A class designed to represent arrays should
take this point into consideration and allow for dynamically defined variable length
arrays.

� Requirements
In the following section you will be developing a new version of the FloatArr class to
meet these requirements and additionally allow you to manipulate arrays as easy as fun-
damental types. For example, a simple assignment should be possible for two objects v1
and v2 in the new class.

Example: v2 = v1;

The object v2 itself—and not the programmer—will ensure that enough memory is
available to accommodate the array v1.

Just as in the case of fundamental types, it should also be possible to use an existing
object, v2, to initialize a new object, v3.

Example: FloatArr v3(v2);

Here the object v3 ensures that enough memory is available to accommodate the array
elements of v2.

When an object of the FloatArr is declared, the user should be able to define the
initial length of the array. The statement

Example: FloatArr fArr(100);

allocates memory for a maximum of 100 array elements.
The definition of the FloatArr class therefore comprises a member that addresses a

dynamically allocated array. In addition to this, two int variables are required to store
the maximum and current number of array elements.

Preview from Notesale.co.uk

Page 500 of 846

480 ■ C H A P T E R 2 2 D Y N A M I C M E M B E R S

// floatArr.h : Dynamic array of floats.
// ---
#ifndef _FLOATARR_
#define _FLOATARR_
class FloatArr
{

private:
float* arrPtr; // Dynamic member
int max; // Maximum quantity without

// reallocation of new storage.
int cnt; // Number of array elements

public:
FloatArr(int n = 256); // Constructor
FloatArr(int n, float val);
~FloatArr(); // Destructor
int length() const { return cnt; }
float& operator[](int i); // Subscript operator.
float operator[](int i) const;
bool append(float val); // Append value val.
bool remove(int pos); // Delete position pos.

};
#endif // _FLOATARR_

#include "floatArr.h"
#include <iostream>
using namespace std;
int main()
{

FloatArr v(10); // Array v of 10 float values
FloatArr w(20, 1.0F); // To initialize array w of

// 20 float values with 1.0.
v.append(0.5F);
cout << " Current number of elements in v: "

<< v.length() << endl; // 1
cout << " Current number of elements in w: "

<< w.length() << endl; // 20
return 0;

}

■ CLASSES WITH A DYNAMIC MEMBER

First version of class FloatArr

Creating objects with dynamic members

Preview from Notesale.co.uk

Page 501 of 846

CLASSES WITH A DYNAMIC MEMBER ■ 481

The next question you need to ask when designing a class to represent arrays is what
methods are necessary and useful. You can enhance FloatArr class step by step by opti-
mizing existing methods or adding new methods.

The first version of the FloatArr class comprises a few basic methods, which are
introduced and discussed in the following section.

� Constructors
It should be possible to create an object of the FloatArr class with a given length and
store a float value in the object, if needed. A constructor that expects an int value as
an argument is declared for this purpose.

FloatArr(int n = 256);

The number 256 is the default argument for the length of the array. This provides for a
default constructor that creates an array with 256 empty array elements.

An additional constructor

FloatArr(int n, int val);

allows you to define an array where the given value is stored in each array element. In
this case you need to state the length of the array.

Example: FloatArr arr(100, 0.0F));

This statement initializes the 100 elements in the array with a value of 0.0.

� Additional Methods
The length() method allows you to query the number of elements in the array.
arr.length() returns a value of 100 for the array arr.

You can overload the subscript operator [] to access individual array elements.

Example: arr[i] = 15.0F;

The index i must lie within the range 0 to cnt-1.
The append() method can be used to append a value to the array. The number of

elements is then incremented by one.
When you call the remove() method it does exactly the opposite of append()—

deleting the element at the stated position. This reduces the current count by one, pro-
vided a valid position was stated.

Preview from Notesale.co.uk

Page 502 of 846

486 ■ C H A P T E R 2 2 D Y N A M I C M E M B E R S

4.1 6.5 8.2 2.7

Object
a

arrPtr

max: 10

cnt: 4

Object
b

arrPtr

max: 10

cnt: 4

//floatArr.cpp: Implementing the methods.
// --
FloatArr::FloatArr(const FloatArr& src)
{

max = src.max; cnt = src.cnt;
arrPtr = new float[max];

for(int i = 0; i < cnt; i++)
arrPtr[i] = src.arrPtr[i];

}

■ COPY CONSTRUCTOR

Effect of the standard copy constructor

FloatArr b(a); // Creates a copy of a.

A self-defined copy constructor for class FloatArr

Preview from Notesale.co.uk

Page 507 of 846

ASSIGNMENT ■ 489

Each class comprises four implicitly defined default methods, which you can replace with
your own definitions:

■ the default constructor and the destructor
■ the copy constructor and the standard assignment

In contrast to initialization by means of the copy constructor, which takes place when an
object is defined, an assignment always requires an existing object. Multiple assignments,
which modify an object, are possible.

� Default Assignment
Given that v1 and v2 are two FloatArr class objects, the following assignment is
valid:

Example: v1 = v2; // Possible, but ok?

Default assignment is performed member by member. The data members of v2 are copied
to the corresponding data members of v1 just like the copy constructor would copy
them. However, this technique is not suitable for classes with dynamic members. This
would simply point the pointers belonging to different objects at the same dynamic allo-
cated memory. In addition, memory previously addressed by a pointer of the target object
will be unreferenced after the assignment.

� Overloading the Assignment Operator
In other words, you need to overload the default assignment for classes containing
dynamic members. Generally speaking, if you need to define a copy constructor, you will
also need to define an assignment.

The operator function for the assignment must perform the following tasks:

■ release the memory referenced by the dynamic members
■ allocate sufficient memory and copy the source object’s data to that memory.

The operator function is implemented as a class method and returns a reference to the
target object allowing multiple assignments. The prototype of the operator function for
the FloatArr class is thus defined as follows:

FloatArr& FloatArr::operator=(const FloatArr& src)

When implementing the operator function you must avoid self assignment, which would
read memory areas that have already been released.

Preview from Notesale.co.uk

Page 510 of 846

496 ■ C H A P T E R 2 2 D Y N A M I C M E M B E R S

// ---
// FloatArr.cpp
// Implements the methods of FloatArr.
// ---

#include "floatArr.h"

// Constructors, destructor, assignment,
// and subscript operator unchanged.

// --- The new functions ---

// Private auxiliary function to enlarge the array.
void FloatArr::expand(int new)
{

if(newMax == max)
return;

max = newMax;
if(newMax < cnt)

cnt = newMax;
float *temp = new float[newMax];
for(int i = 0; i < cnt; ++i)

temp[i] = arrPtr[i];

delete[] arrPtr;
arrPtr = temp;

}

// Append floating-point number or an array of floats.
void FloatArr::append(float val)
{

if(cnt+1 > max)
expand(cnt+1);

arrPtr[cnt++] = val;
}

void FloatArr::append(const FloatArr& v)
{

if(cnt + v.cnt > max)
expand(cnt + v.cnt);

int count = v.cnt; // Necessary if v == *this

for(int i=0; i < count; ++i)
arrPtr[cnt++] = v.arrPtr[i];

}

Preview from Notesale.co.uk

Page 517 of 846

SOLUTIONS ■ 497

// Insert a float or an array of floats
bool FloatArr::insert(float val, int pos)
{

return insert(FloatArr(1,val), pos);
}

bool FloatArr::insert(const FloatArr& v, int pos)
{

if(pos < 0 || pos >= cnt)
return false; // Invalid position

if(max < cnt + v.cnt)
expand(cnt + v.cnt);

int i;
for(i = cnt-1; i >= pos; --i) // Shift up

arrPtr[i+v.cnt] = arrPtr[i]; // starting at pos
for(i = 0; i < v.cnt; ++i) // Fill gap.

arrPtr[i+pos] = v.arrPtr[i];
cnt = cnt + v.cnt;
return true;

}

// To delete
bool FloatArr::remove(int pos)
{

if(pos >= 0 && pos < cnt)
{

for(int i = pos; i < cnt-1; ++i)
arrPtr[i] = arrPtr[i+1];

--cnt;
return true;

}
else

return false;
}

// Output the array
ostream& operator<<(ostream& os, const FloatArr& v)
{

int w = os.width(); // Save field width.
for(float *p = v.arrPtr; p < v.arrPtr + v.cnt; ++p)
{

os.width(w); os << *p;
}
return os;

}

Preview from Notesale.co.uk

Page 518 of 846

DERIVED CLASSES ■ 503

When you define a derived class, the base class, the additional data members and meth-
ods, and the access control to the base class are defined.

The opposite page shows a schematic definition of a derived class, C. The C class
inherits the B class, which is defined in the public section following the colon. The
private and public sections contain additional members of the C class.

� Access to Public Members in the Base Class
Access privileges to the base class B are designated by the public keyword that pre-
cedes the B. In other words,

■ all the public members in base class B are publicly available in the derived class
C.

This kind of inheritance ports the public interface of the base class to the derived
class where it is extended by additional declarations. Thus, objects of the derived class
can call the public methods of the base class. A public base class, therefore, imple-
ments the is relationship; this is quite common.

There are some less common cases where access to the members of the base class
needs to be restricted or prohibited. Only the methods of class C can still access the
public members of B, but not the users of that class. You can use private or pro-
tected derivation to achieve this (these techniques will be discussed later).

� Access to Private Members of the Base Class
The private members of the base class are protected in all cases. That is,

■ the methods of the derived class cannot access the private members of the base
class.

Imagine the consequences if this were not so: you would be able to hack access to the
base class by simply defining a derived class, thus undermining any protection offered by
data encapsulation.

� Direct and Indirect Base Classes
The derived class C can itself be a base class for a further class, D. This allows for class
hierarchies. Class B then becomes an indirect base class for class D.

In the graphic on the opposite page, the arrow ↑ means directly derived from. That is,
class D is a direct derivation of class C and an indirect derivation of B.

Preview from Notesale.co.uk

Page 524 of 846

518 ■ C H A P T E R 2 3 I N H E R I T A N C E

Product

PrepackedFood FreshFood

Properties:

Barcode

Name

Methods:

setCode()
getCode()
 ...
scanner()
printer()

Properties:

Price per piece

Methods:

getPrice()
setPrice()
 ...
scanner()
printer()

Properties:

Weight

Price per pound

Methods:

setWght()
getWght()
 ...
scanner()
printer()

Exercise 3

Preview from Notesale.co.uk

Page 539 of 846

SOLUTIONS ■ 521

// --
// car.cpp
// Implements the methods of Car, PassCar, and Truck
// --
#include "car.h"
// --
// The methods of base class Car:
Car::Car(long n, const string& prod)
{

cout << "Creating an object of type Car." << endl;
nr = n; producer = prod;

}
Car::~Car()
{

cout << "Destroying an object of type Car" << endl;
}
void Car::display() const
{

cout << "\n---------------------------- "
<< "\nCar number: " << nr
<< "\nProducer: " << producer
<< endl;

}

// ---
// The methods of the derived class PassCar:
PassCar::PassCar(const string& tp, bool sd, int n,

const string& hs)
: Car(n, hs), PassCarTyp(tp), sunRoof(sd)

{
cout << "I create an object of type PassCar." << endl;

}
PassCar::~PassCar()
{

cout << "\nDestroying an object of type PassCar"
<< endl;

}

void PassCar::display(void) const
{

Car::display(); // Base class method
cout << "Type: " << passCarType

<< "\nSunroof: ";
if(sunRoof)

cout << "yes "<< endl;
else

cout << "no " << endl;
}

Preview from Notesale.co.uk

Page 542 of 846

522 ■ C H A P T E R 2 3 I N H E R I T A N C E

// --
// The methods of the derived class Truck:
Truck::Truck(int a, double t, int n, const string& hs)

: Car(n, hs), axles(a), tons(t)
{

cout << "Creating an object of type Truck." << endl;
}
Truck::~Truck()
{

cout << "\nDestroying an object of type Truck\n";
}
void Truck::display() const
{

Car::display();
cout << "Axles: " << axles

<< "\nCapacity: " << tons << " long tons\n";
}

// ---
// Car_t.cpp : Tests the base class Car and
// the derived classes PassCar and Truck.
// ---
#include "car.h"
int main()
{

Truck toy(5, 7.5, 1111, "Volvo");
toy.display();
char c;
cout << "\nDo you want to create an object of type "

<< " PassCar? (y/n) "; cin >> c;
if(c == 'y' || c == 'Y')
{

const PassCar beetle("Beetle", false, 3421, "VW");
beetle.display();

}

cout << "\nDo you want to create an object "
<< " of type car? (y/n) "; cin >> c;

if(c == 'y' || c == 'Y')
{

const Car oldy(3421, "Rolls Royce");
oldy.display();

}
return 0;

}

Preview from Notesale.co.uk

Page 543 of 846

SOLUTIONS ■ 527

public:
PrepackedFood(double p = 0.0,long b = 0L,

const string& s = "")
: Product(b, s), pce_price(p)
{}
void setPrice(double p){ pce_price = p;}
double getPrice()const { return pce_price; }
void scanner()
{ Product::scanner();

cout << "Price per piece: "; cin >> pce_price;
}
void printer() const
{ Product::printer();

cout << fixed << setprecision(2)
<< "Price per piece: " << pce_price << endl;

}
};

class FreshFood : public Product
{
private:
double wght;
double lbs_price;

public:
FreshFood(double g = 0.0, double p = 0.0,

long b = 0L, const string& s = "")
: Product(b, s), wght(g), lbs_price(p) {}
void setWght(double g) { wght = g;}
double getWght()const { return wght; }
void setPrice(double p) { lbs_price = p;}
double getPrice()const { return lbs_price; }
void scanner()
{ Product::scanner();

cout << "Weight(lbs): "; cin >> wght;
cout << "Price/lbs: "; cin >> lbs_price;
cin.sync(); cin.clear();

}
void printer() const
{

Product::printer();
cout << fixed << setprecision(2)

<< "Price per Lbs: " << lbs_price
<< "\nWeight: " << wght
<< "\nTotal: " << lbs_price * wght
<< endl;

}
};
#endif

Preview from Notesale.co.uk

Page 548 of 846

528 ■ C H A P T E R 2 3 I N H E R I T A N C E

// --
// product_t.cpp
// Tests classes Product, PrepackedFood, and FreshFood.
// --

#include "product.h"

int main()
{

Product p1(12345L, "Flour"), p2;

p1.printer(); // Output the first product

p2.setName("Sugar"); // Set the data members
p2.setCode(543221);

p2.printer(); // Output the second product

// Prepacked products:
PrepackedFood pf1(0.49, 23456, "Salt"), pf2;

pf1.printer(); // Output the first
// prepacked product

cout << "\n Input data of a prepacked product: ";
pf2.scanner(); // Input and output
pf2.printer(); // data of 2nd product

FreshFood pu1(1.5, 1.69, 98765, "Grapes"), pu2;

pu1.printer(); // Output first item
// fresh food

cout <<"\n Input data for a prepacked product: ";
pu2.scanner(); // Input and output
pu2.printer(); // data of 2nd product.

cout << "\n-------------------------------"
<< "\n-------------------------------"
<< "\nAgain in detail: \n"
<< fixed << setprecision(2)
<< "\nBarcode: " << pu2.getCode()
<< "\nName: " << pu2.getName()
<< "\nPrice per Lbs: " << pu2.getPrice()
<< "\nWeight: " << pu2.getWght()
<< "\nEnd price: " << pu2.getPrice()

* pu2.getWght()
<< endl;

return 0;
}

Preview from Notesale.co.uk

Page 549 of 846

536 ■ C H A P T E R 2 4 T Y P E C O N V E R S I O N I N C L A S S H I E R A R C H I E S

Car

PassCar

carPtr

static_cast<PassCar*>(carPtr)

Pointer to

Base class

Derived
class

Downcast

Car

PassCar

static_cast<Car*>(PassCarPtr)

PassCarPtr

Pointer to

Base class

Derived
class

Upcast

■ EXPLICIT TYPE CONVERSIONS

Downcast

Upcast

Preview from Notesale.co.uk

Page 557 of 846

EXPLICIT TYPE CONVERSIONS ■ 537

� Upcasts and Downcasts
Type conversions that walk up a class hierarchy, or upcasts, are always possible and safe.
Upcasting is performed implicitly for this reason.

Type conversions that involve walking down the tree, or downcasts, can only be per-
formed explicitly by means of a cast construction. The cast operator (type), which was
available in C, or the static_cast< > operator are available for this task, and are
equivalent in this case.

� Explicit Cast Constructions
Given that cabrio is again an object of the derived class PassCar, the following state-
ments

Example: Car* carPtr = &cabrio;
((PassCar*) carPtr)->display();

first point the base class pointer carPtr to the cabrio object. carPtr is then cast as a
pointer to the derived class. This allows you to access the display() method of the
derived class PassCar via the pointer. Parentheses are necessary in this case as the
member access operator -> has a higher precedence than the cast operator (type).

The operator static_cast< > conforms to the following

Syntax: static_cast<type>(expression)

and converts the expression to the target type type. The previous example is thus equiv-
alent to

Example: static_cast<PassCar*>(carPtr)->display();

No parentheses are required here as the operators static_cast<> and -> are of equal
precedence. They are read from left to right.

After downcasting a pointer or a reference, the entire public interface of the derived
class is accessible.

� Downcast Safety Issues
Type conversions from top to bottom need to be performed with great care. Downcasting
is only safe when the object referenced by the base class pointer really is a derived class
type. This also applies to references to base classes.

To allow safe downcasting C++ introduces the concept of dynamic casting. This tech-
nique is available for polymorphic classes and will be introduced in the next chapter.

Preview from Notesale.co.uk

Page 558 of 846

DESTROYING DYNAMICALLY ALLOCATED OBJECTS ■ 549

Dynamically created objects in a class hierarchy are normally handled by a base class
pointer. When such an object reaches the end of its lifetime, the memory occupied by
the object must be released by a delete statement.

Example: Car *carPtr;
carPtr = new PassCar("500",false,21,"Geo");
. . .
delete carPtr;

� Destructor Calls
When memory is released, the destructor for an object is automatically called. If multiple
constructors were called to create the object, the corresponding destructors are called in
reverse order. What does this mean for objects in derived classes? The destructor of the
derived class is called first and then the destructor of the base class executed.

If you use a base class pointer to manage an object, the appropriate virtual methods of
the derived class are called. However, non-virtual methods will always execute the base
class version.

In the previous example, only the base class destructor for Car was executed. As the
PassCar destructor is not called, neither is the destructor called for the data member
passCarType, which is additionally defined in the derived class. The data member
passCarType is a string, however, and occupies dynamically allocated memory—
this memory will not be released.

If multiple objects are created dynamically in the derived class, a dangerous situation
occurs. More and more unreferenced memory blocks will clutter up the main memory
without you being able to reallocate them—this can seriously impact your program’s
response and even lead to external memory being swapped in.

� Virtual Destructors
This issue can be solved simply by declaring virtual destructors. The opposite page shows
how you would define a virtual destructor for the Car class. Just like any other virtual
method, the appropriate version of the destructor will be executed. The destructors from
any direct or indirect base class then follow.

A class used as a base class for other classes should always have a virtual destructor
defined. Even if the base class does not need a destructor itself, it should at least contain
a dummy destructor, that is, a destructor with an empty function body.

Preview from Notesale.co.uk

Page 570 of 846

VIRTUAL METHOD TABLE ■ 551

� Static Binding
When a non-virtual method is called, the address of the function is known at time of
compilation. The address is inserted directly into the machine code. This is also referred
to as static or early binding.

If a virtual method is called via an object’s name, the appropriate version of this
method is also known at time of compilation. So this is also a case of early binding.

� Dynamic Binding
However, if a virtual method is called by a pointer or reference, the function that will be
executed when the program is run is unknown at time of compilation. The statement

Example: carPtr->display();

could execute different versions of the display() method, depending on the object
currently referenced by the pointer.

The compiler is therefore forced to create machine code that does not form an
association with a particular function until the program is run. This is referred to as late
or dynamic binding.

� VMT
Dynamic binding is supported internally by virtual method tables (or VMT for short). A
VMT is created for each class with at least one virtual method—that is, an array with the
addresses of the virtual methods in the current class.

Each object in a polymorphic class contains a VMT pointer, that is, a hidden pointer
to the VMT of the corresponding class. Dynamic binding causes the virtual function call
to be executed in two steps:

1. The pointer to the VMT in the referenced object is read.

2. The address of the virtual method is read in the VMT.

In comparison with static binding, dynamic binding does have the disadvantage that
VMTs occupy memory. Moreover, program response can be impacted by indirect
addressing of virtual methods.

However, this is a small price to pay for the benefits. Dynamic binding allows you to
enhance compiled source code without having access to the source code. This is particu-
larly important when you consider commercial class libraries, from which a user can
derive his or her own classes and virtual function versions.

Preview from Notesale.co.uk

Page 572 of 846

560 ■ C H A P T E R 2 5 P O L Y M O R P H I S M

// Insert a truck:
bool CityCar::insert(int a, double t,

long n, const string& prod)
{

if(cnt < 100)
{

vp[cnt++] = new Truck(a, t, n, prod);
return true;

}
else

return false;
}

void CityCar::display() const
{

cin.sync(); cin.clear(); // No previous input
for(int i=0; i < cnt; ++i)
{

vp[i]->display();
if((i+1)%4 == 0) cin.get();

}
}

// --
// city_t.cpp : Test the CityCar class
// --
#include "city.h"
char menu(void);
void getPassCar(string&, bool&, long&, string&);
void getTruck(int&, double&, long&, string&);

int main()
{

CityCar carExpress;
string tp, prod; bool sr;
int a; long n; double t;

// Two cars are already present:
carExpress.insert(6, 9.5, 54321, "Ford");
carExpress.insert("A-class", true, 54320, "Mercedes");
char choice;
do
{ choice = menu();

switch(choice)
{
case 'Q':
case 'q': cout << "Bye Bye!" << endl;

break;

Preview from Notesale.co.uk

Page 581 of 846

SOLUTIONS ■ 561

case 'P':
case 'p': getPassCar(tp, sr, n, prod);

carExpress.insert(tp, sr, n, prod);
break;

case 'T':
case 't': getTruck(a, t, n, prod);

carExpress.insert(a, t, n, prod);
break;

case 'D':
case 'd': carExpress.display();

cin.get();
break;

default: cout << "\a"; // Beep
break;

}
}while(choice != 'Q' && choice != 'q');
return 0;

}

char menu() // Input a command.
{

cout << "\n * * * Car Rental Management * * *\n\n"
char c;
cout << "\n P = Add a passenger car "

<< "\n T = Add a truck "
<< "\n D = Display all cars "
<< "\n Q = Quit the program "
<< "\n\nYour choice: ";

cin >> c;
return c;

}

void getPassCar(string& tp, bool& sr, long& n,string& prod)
{

char c;
cin.sync(); cin.clear();
cout << "\nEnter data for passenger car:" << endl;
cout << "Car type: "; getline(cin, tp);
cout << "Sun roof (y/n): "; cin >> c;
if(c == 'y' || c == 'Y')

sr = true;
else

sr = false;
cout << "Car number: "; cin >> n;
cin.sync();
cout << "Producer: "; getline(cin, prod);
cin.sync(); cin.clear();

}

Preview from Notesale.co.uk

Page 582 of 846

SOLUTION ■ 581

class DerivedEl : public BaseEl
{

private:
string rem;

public:
DerivedEl(Cell* suc = NULL,

const string& s="", const string& b="")
: BaseEl(suc, s), rem(b){ }
// Access methods:
void setRem(const string& b){ rem = b; }
const string& getRem() const { return rem; }
void display() const
{

BaseEl::display();
cout << "Remark: " << rem << endl;

}
};
#endif

// --
// List.h : Defines the class InhomList
// --
#ifndef _LIST_H_
#define _LIST_H_
#include "cell.h"
class InhomList
{
private:
Cell* first;

protected:
Cell* getPrev(const string& s);
Cell* getPos(const string& s);
void insertAfter(const string& s, Cell* prev);
void insertAfter(const string& s,const string& b,

Cell* prev);
void erasePos(Cell* pos);

public:
InhomList(){ first = NULL; }
InhomList(const InhomList& src);
~InhomList();
InhomList& operator=(const InhomList& src);
void insert(const string& n);
void insert(const string& n, const string& b);
void erase(const string& s);
void displayAll() const;

};
#endif

Preview from Notesale.co.uk

Page 602 of 846

582 ■ C H A P T E R 2 6 A B S T R A C T C L A S S E S

// --
// List.cpp : The methods of class InhomList
// --
#include "List.h"
#include <typeinfo>

// Copy constructor:
InhomList::InhomList(const InhomList& src)
{

// Append the elements from src to the empty list.
first = NULL;
Cell *pEl = src.first;
for(; pEl != NULL; pEl = pEl->getNext())

if(typeid(*pEl) == typeid(DerivedEl))
insert(dynamic_cast<DerivedEl*>(pEl)->getName(),

dynamic_cast<DerivedEl*>(pEl)->getRem());
else

insert(dynamic_cast<BaseEl*>(pEl)->getName());
}

// Assignment:
InhomList& InhomList::operator=(const InhomList& src)
{

// To free storage for all elements:
Cell *pEl = first,

*next = NULL;
while(pEl != NULL)
{

next = pEl->getNext();
delete pEl;
pEl = next;

}

first = NULL; // Empty list

// Copy the elements from src to the empty list.
pEl = src.first;

for(; pEl != NULL; pEl = pEl->getNext())
if(typeid(*pEl) == typeid(DerivedEl))

insert(dynamic_cast<DerivedEl*>(pEl)->getName(),
dynamic_cast<DerivedEl*>(pEl)->getRem());

else
insert(dynamic_cast<BaseEl*>(pEl)->getName());

return *this;
}

Preview from Notesale.co.uk

Page 603 of 846

SOLUTION ■ 585

void InhomList::displayAll() const
{

Cell* pEl = first;
while(pEl != NULL)
{

pEl->display();
pEl = pEl->getNext();

}
}

// --
// List_t.cpp : Tests the sorted inhomogeneous list
// --

#include "List.h"

int main()
{

InhomList liste1;

cout << "\nTo test inserting. " << endl;

liste1.insert("Bully, Max");
liste1.insert("Cheers, Rita", "always merry");
liste1.insert("Quick, John", "topfit");
liste1.insert("Banderas, Antonio");

liste1.displayAll(); cin.get();

cout << "\nTo test deleting. " << endl;

liste1.erase("Banderas, Antonio");
liste1.erase("Quick, John");
liste1.erase("Cheers, Rita");

liste1.displayAll(); cin.get();

cout << "\n----------------------------------"
<< "\nGenerate a copy and insert an element. "
<< endl;

InhomList liste2(liste1), // Copy constructor
liste3; // and an empty list.

liste2.insert("Chipper, Peter", "in good temper");
liste3 = liste2; // Assignment
cout << "\nAfter the assignment: " << endl;
liste3.displayAll();

return 0;
}

Preview from Notesale.co.uk

Page 606 of 846

This page intentionally left blank

Preview from Notesale.co.uk

Page 607 of 846

587

Multiple Inheritance
This chapter describes how new classes are created by multiple

inheritance and explains their uses. Besides introducing you to creating

and destroying objects in multiply-derived classes, virtual base classes are

depicted to avoid ambiguity in multiple inheritance.

chapter27
Preview from Notesale.co.uk

Page 608 of 846

590 ■ C H A P T E R 2 7 M U L T I P L E I N H E R I T A N C E

Car Car

PassCar Van

SUV

class SUV : public PassCar, public Van
{

// Here are additional methods and data members
};

■ MULTIPLE INDIRECT BASE CLASSES

The multiple indirect base class Car

Definition scheme of class SUV

Preview from Notesale.co.uk

Page 611 of 846

INITIALIZING VIRTUAL BASE CLASSES ■ 597

� Constructor Calls in Virtual Base Classes
When an object is created for a multiply-derived class, the constructors of the base
classes are called first. However, if there is one virtual base class in the class hierarchy,
the virtual base class constructor is executed before a constructor of a non-virtual base
class is called.

The constructors of the virtual base classes are called first, followed by the constructors of non-virtual
base classes in the order defined in the inheritance graph.

✓ NOTE

The constructor of a virtual base class is called with the arguments stated for the base initializer of the
last class to be derived, i.e. class at the bottom end of the inheritance graph.

✓ NOTE

The constructor of the virtual base class nearest the top of the inheritance graph is
executed first. This does not necessarily mean the top level of the class hierarchy, since a
virtual base class can be derived from a non-virtual base class.

In our example with the multiply-derived class SUV (Sport Utility Vehicle) the con-
structor for the virtual base class Car is called first, followed by the direct base classes
PassCar and Van, and last but not least, the constructor of the SUV class.

� Base Initializers
You may be wondering what arguments are used to call the constructor of a virtual base
class. A base initializer of the directly-derived class or any other derivation could be
responsible. The following applies:

The example opposite shows SUV containing a constructor with one base initializer.
Its arguments are passed to the constructor of the virtual base class Car.

For the purpose of initialization, it does not matter whether a class derived directly
from Car contains a base initializer or not. Base initializers for virtual indirect base
classes defined in the constructor of a direct base class are ignored. If the base classes
PassCar and Van also contained base initializers for the virtual base class Car, these
would be ignored too.

If the constructor for the last derived class does not contain a base initializer, the
default constructor is executed for each virtual base class. Whatever happens, a default
constructor must then exist in every virtual base class! Thus, base initializers that happen
to exist in base classes are also ignored.

Preview from Notesale.co.uk

Page 618 of 846

612 ■ C H A P T E R 2 8 E X C E P T I O N H A N D L I N G

try
{

// Exceptions thrown by this block will be
// caught by the exception handlers,
// which are defined next.

}
catch(Type1 exc1)
{

// Type1 exceptions are handled here.
}

[catch(Type2 exc2)
{

// Type2 exceptions are handled here.
}
. . . //etc.

]
[catch(...)
{

// All other exceptions are handled here.
}]

The brackets [...] in a syntax description indicate that the enclosed section is optional.

✓ NOTE

■ EXCEPTION HANDLERS

Syntax of try and catch blocks

Preview from Notesale.co.uk

Page 633 of 846

614 ■ C H A P T E R 2 8 E X C E P T I O N H A N D L I N G

// calc_err.cpp: Tests the function calc(),
// which throws exceptions.
// --
#include <iostream>
#include <string>
using namespace std;

double calc(int a, int b);

int main()
{

int x, y;
double res;
bool flag = false;
do
{
try // try block
{
cout << "Enter two positive integers: ";
cin >> x >> y;
res = calc(x, y);
cout << x << "/" << y << " = " << res << endl;
flag = true; // Then to leave the loop.

}
catch(string& s) // 1st catch block
{
cerr << s << endl;

}
catch(Error&) // 2nd catch block
{
cerr << "Division by 0! " << endl;

}
catch(...) // 3rd catch block
{
cerr << "Unexpected exception! \n";
exit(1);

}
}while(!flag);

// continued ...
return 0;

}

As the Error class contains no data members, the corresponding catch block declares only the type
of exception, and no parameters. This avoids a compiler warning since the parameter is not used.

✓ NOTE

■ THROWING AND CATCHING EXCEPTIONS
Demonstration program

Preview from Notesale.co.uk

Page 635 of 846

ex
er
ci
se
s

622 ■ C H A P T E R 2 8 E X C E P T I O N H A N D L I N G

Error in reading:

Invalid index: ...

Error in writing:

Invalid index: ...

■ EXERCISES

Exercise 1: Error messages of the exception handler

The first exception handler’s message:

The second exception handler’s message:Preview from Notesale.co.uk

Page 643 of 846

632 ■ C H A P T E R 2 8 E X C E P T I O N H A N D L I N G

Fraction& operator+=(const Fraction& a)
{

numerator = a.numerator * denominator
+ numerator * a.denominator;

denominator *= a.denominator;
return *this;

}

Fraction& operator-=(const Fraction& a)
{

*this += (-a);
return *this;

}

Fraction& operator++()
{

numerator += denominator;
return *this;

}

Fraction& operator--()
{

numerator -= denominator;
return *this;

}
friend Fraction operator+(const Fraction&,

const Fraction&);
friend Fraction operator-(const Fraction&,

const Fraction&);
friend Fraction operator*(const Fraction&,

const Fraction&);
friend Fraction operator/(const Fraction&,

const Fraction&)
throw(Fraction::DivisionByZero);

friend ostream& operator<<(ostream&, const Fraction&);
friend istream& operator>>(istream& is, Fraction& a)

throw(Fraction::DivisionByZero);
};

#endif

Preview from Notesale.co.uk

Page 653 of 846

OPENING A FILE FOR RANDOM ACCESS ■ 639

� Random File Access
So far we have only looked at sequential file access. If you need access to specific infor-
mation in such a file, you have to walk through the file from top to tail, and new records
are always appended at the end of the file.

Random file access gives you the option of reading and writing information directly at a
pre-defined position. To be able to do this, you need to change the current file position
explicitly, that is, you need to point the get/put pointer to the next byte to be manipu-
lated. After pointing the pointer, you can revert to using the read and write operations
that you are already familiar with.

� Open Modes
One prerequisite of random file access is that the position of the records in the file can be
precisely identified. This implies opening the file in binary mode to avoid having to
transfer additional escape characters to the file.

Example: ios::openmode mode = ios::in | ios::out |
ios::app | ios::binary;

fstream fstr("account.fle", mode);

This statement opens the file "Account.fle" in binary mode for reading and append-
ing at end-of-file. The file will be created if it did not previously exist. Random read access
to the file is possible, but for write operations new records will be appended at the end of
the file.

To enable random read and write access to a file, the file can be opened as follows:

Example: ios::openmode mode = ios::in | ios::out |
ios::binary;

fstream fstr("account.fle", mode);

However, this technique can only be used for existing files. If the file does not exist, you
can use the ios::trunc flag to create it.

The section “File State” discusses your error handling options if a file, such as
"account.fle" cannot be found.

Preview from Notesale.co.uk

Page 660 of 846

FILE STATE ■ 645

� State Flags
A file stream can assume various states, for example, when it reaches the end of a file and
cannot continue reading. A file operation can also fail if a file cannot be opened, or if a
block is not transferred correctly.

The ios class uses state flags to define the various states a file can assume. Each state
flag corresponds to a single bit in a status-word, which is represented by the iostate
type in the ios class. The following state flags exist:

■ ios::eofbit end of file reached
■ ios::failbit last read or write operation failed
■ ios::badbit an irrecoverable error occurred
■ ios::goodbit the stream is ok, e.g. no other state flag is set.

The “flag” ios::goodbit is an exception to the rule since it is not represented by a
single bit, but by the value 0 if no other flag has been set. In other words a status-word
has the value ios::goodbit if everything is fine!

� Discovering and Changing the State
There are multiple methods for discovering and modifying the status of a stream. A
method exists for each state flag; these are eof(), fail(), bad(), and good(). They
return true when the corresponding flag has been raised. This means you can discover
the end of a file with the following statement:

Example: if(fstr.eof()) ...

The status-word of a stream can be read using the rdstate() method. Individual flags
can then be queried by a simple comparison:

Example: if(myfile.rdstate() == ios::badbit). . .

The clear() method is available for clearing the status-word. If you call clear()
without any arguments, all the state flags are cleared. An argument of the iostate type
passed to clear() automatically becomes the new status-word for the stream.

� The IndexFile Class
The IndexFile class, which uses a file to represent an index, is defined opposite. The
constructor for this class uses the clear() method to reset the fail bit after an invalid
attempt to open a non-existent file. A new file can then be created.

The IndexFile class comprises methods for inserting, seeking, and retrieving index
entries, which we will be implementing later in this chapter.

Preview from Notesale.co.uk

Page 666 of 846

648 ■ C H A P T E R 2 9 M O R E A B O U T F I L E S

// account.h : Defines the classes
// Account, DepAcc, and SavAcc
// with virtual read and write methods.
// --
// . . .
enum TypeId { ACCOUNT, DEP_ACC, SAV_ACC };
class Account
{
private: // Data members: as previously defined.
public: // Constructor, access methods ...
virtual TypeId getTypeId() const { return ACCOUNT;}
virtual ostream& write(ostream& fs) const;
virtual istream& read(istream& fs);

};
class DepAcc : public Account
{ // Data members, constructor, . . .

TypeId getTypeId() const { return DEP_ACC; }
ostream& write(ostream& fs) const;
istream& read(istream& fs);

};
class SavAcc: public Account
{ // Data members, constructor, . . .

TypeId getTypeId() const { return SAV_ACC; }
ostream& write(ostream& fs) const;
istream& read(istream& fs);

};

// account.cpp: Implements the methods.
// --
#include "account.h"
ostream& DepAcc::write(ostream& os) const
{

if(!Account::write(os))
return os;

os.write((char*)&limit, sizeof(limit));
os.write((char*)&deb, sizeof(deb));
return os;

}
istream& DepAcc::read(istream& is)
{

if(!Account::read(is))
return is;

is.read((char*)&limit, sizeof(limit));
is.read((char*)&deb, sizeof(deb));
return is;

}
// . . .

■ PERSISTENCE OF POLYMORPHIC OBJECTS

The methods read() and write() of class DepAcc

Preview from Notesale.co.uk

Page 669 of 846

IMPLEMENTING AN INDEX FILE ■ 655

� Index File for Account Management
Since an index file consists of a primary file and an index, it makes sense to derive the
class used to represent an index file from the classes of the primary file and the index file.
Let’s now look at a sample index file, used for managing bank accounts.

The IndexFileSystem class, which is derived from the two previously defined
classes AccFile and IndexFile, is defined on the opposite page. The only data mem-
ber is a string for the file name. The constructor expects a file name as an argument and
composes names for the primary file and the index by adding a suitable suffix. Base ini-
tializers are then used to open the corresponding files.

It is not necessary to define a destructor, since files are automatically closed when the
base class destructors are called.

� Inserting and Retrieving Records
The insert() method was defined to insert new records. It first calls the search()
method to check whether the account number already exists in the index. If not, a new
record is appended to the end of the primary file using the append() method. Then the
key and the address of the record are inserted into the index.

The IndexFileSystem class also contains the retrieve() method, which is used
to retrieve records from the primary file. The key, key, which is passed to the method, is
used by the search() method to look up the address of the required record in the
index. Then the record is retrieved from the primary file by the AccFile class
retrieve() method.

Only the retrieve() methods for the IndexFile and AccFile classes and the
search() method, which performs a binary search in the index, are needed to com-
plete the index file implementation. It’s your job to implement these three methods as
your next exercise!

Using a sorted file to implement an index has the disadvantage that records need to
be shifted to make room to insert new records. As shifting is time-consuming, an index is
normally represented by a tree, which needs less reorganization.

Preview from Notesale.co.uk

Page 676 of 846

ex
er
ci
se
s

656 ■ C H A P T E R 2 9 M O R E A B O U T F I L E S

class IndexFile
{

private:
fstream index;
string name; // Filename of the index

public:
IndexFile(const string s) throw(OpenError);
~IndexFile(){ index.close(); }
void insert(long key, long pos)

throw(ReadError, WriteError);
long search(long key) throw(ReadError);
void retrieve(IndexEntry& entry, long pos)

throw(ReadError);
};

enum TypeId { ACCOUNT, DEPOSIT, SAVINGS };
class AccFile
{
private:
fstream f;
string name; // Filename of primary file
public:

AccFile(const string s) throw(OpenError);
~AccFile(){ f.close(); }
long append(Account& acc) throw(WriteError);
Account* retrieve(long pos) throw(ReadError);

};

■ EXERCISES

Exercise 1
Class IndexFile

Class AccFile

Preview from Notesale.co.uk

Page 677 of 846

EXERCISES ■ 657

Exercise 1
Complete and test the implementation of the IndexFileSystem class.The
methods should throw exceptions of an appropriate FileError type if an error
occurs.

a. Complete the constructor of the IndexFile class in order to throw an
exception of the type OpenError if the file can not be opened.

b. Write the retrieve() method for the IndexFile class.The method
retrieves a record at a given position in the index.

c. Define the search() method, which looks up an index entry for an
account number passed to it as an argument. Base the method on the
binary search algorithm.

Return value: The position of the record found, or -1 if the account
number is not found in the index.

d. Then define the retrieve() method for the AccFile class, which first
evaluates the type field at a given position in the account file, then
dynamically allocates memory for an object of the appropriate type, and
finally reads the data for an account from the file.

e. Write a main() function that uses a try block to create an Index-
FileSystem type object and to insert several accounts of various types
into the index file.The subsequent user dialog reads a key and displays
the corresponding record on screen.Write an exception handler to han-
dle the various errors that could occur.The name of the file and the
cause of the error must be output in any case of error.

Preview from Notesale.co.uk

Page 678 of 846

SOLUTIONS ■ 661

// Access methods here:
long getNr() const { return nr; }
void setNr(unsigned long n){ nr = n; }
// . . .

// The other methods:
virtual TypeId getTypeId() const { return ACCOUNT; }

virtual ostream& write(ostream& fs) const;
virtual istream& read(istream& fs);

virtual void display() const
{

cout << fixed << setprecision(2)
<< "----------------------------------\n"
<< "Account holder: " << name << endl
<< "Account number: " << nr << endl
<< "Balance of account: " << balance << endl
<< "----------------------------------\n"
<< endl;

}
};

class DepAcc : public Account
{
private:
double limit; // Overdrawn limit
double interest; // Interest rate

public:
DepAcc(const string s = "X",

unsigned long n = 1111111L,
double bal = 0.0,
double li = 0.0,
double ir = 0.0)

: Account(s, n, bal), limit(li), interest(ir)
{ }

// Access methods:
// . . .

// The other methods are implicit virtual:
TypeId getTypeId() const { return DEP_ACC; }

ostream& write(ostream& fs) const;
istream& read(istream& fs);

Preview from Notesale.co.uk

Page 682 of 846

664 ■ C H A P T E R 2 9 M O R E A B O U T F I L E S

// ---- Methods of class AccFile ----
AccFile::AccFile(const string& s) throw(OpenError)
{

ios::openmode mode = ios::in | ios::out | ios::app
| ios::binary;

f.open(s.c_str(), mode);
if(!f)

throw OpenError(s);
else

name = s;
}

void AccFile::display() throw(ReadError)
{

Account acc, *pAcc = NULL;
DepAcc depAcc;
SavAcc savAcc;
TypeId id;

if(!f.seekg(0L))
throw ReadError(name);

cout << "\nThe account file: " << endl;

while(f.read((char*)&id, sizeof(TypeId)))
{

switch(id)
{

case ACCOUNT: pAcc = &acc;
break;

case DEP_ACC: pAcc = &depAcc;
break;

case SAV_ACC: pAcc = &savAcc;
break;

default: cerr << "Invalid flag in account file"
<< endl;

exit(1);
}

if(!pAcc->read(f))
break;

pAcc->display();
cin.get(); // Go on with return

}

Preview from Notesale.co.uk

Page 685 of 846

668 ■ C H A P T E R 2 9 M O R E A B O U T F I L E S

// --
// index.cpp : Methods of the classes
// IndexEntry, Index, and IndexFile
// --
#include "index.h"

fstream& IndexEntry::write_at(fstream& ind, long pos) const
{

ind.seekp(pos);
ind.write((char*)&key, sizeof(key));
ind.write((char*)&recPos, sizeof(recPos));
return ind;

}

fstream& IndexEntry::read_at(fstream& ind, long pos)
{

ind.seekg(pos);
ind.read((char*)&key, sizeof(key));
ind.read((char*)&recPos, sizeof(recPos));
return ind;

}

fstream& IndexEntry::write(fstream& ind) const
{

ind.write((char*)&key, sizeof(key));
ind.write((char*)&recPos, sizeof(recPos));
return ind;

}

fstream& IndexEntry::read(fstream& ind)
{

ind.read((char*)&key, sizeof(key));
ind.read((char*)&recPos, sizeof(recPos));
return ind;

}

// ---
// Methods of class IndexFile
IndexFile::IndexFile(const string& file) throw (OpenError)
{

ios::openmode mode = ios::in | ios::out | ios::binary;
// Open file if it already exists:

index.open(file.c_str(), mode);
if(!index) // If the file doesn't exist
{ index.clear();

mode |= ios::trunc;
index.open(file.c_str(), mode);
if(!index)

throw OpenError(name);
}
name = file;

}

Preview from Notesale.co.uk

Page 689 of 846

SOLUTIONS ■ 679

kde.setNr(10L); kde.setName("Peter");
hash.insert(kde);

kde.setNr(17L); kde.setName("Alexa");
hash.insert(kde);

kde.setNr(21L); kde.setName("Peter");
hash.insert(kde);

kde.setNr(15L); kde.setName("Jeany");
hash.insert(kde);
cout << "\nInsertion complete: " << endl;

hash.display();

unsigned long key;
cout << "Key? "; cin >> key;

HashEntry temp = hash.retrieve(key);
if(temp.getNr() != 0L)

temp.display();
else

cout << "Key " << key
<< " not found" << endl;

}
catch(OpenError& err)
{

cerr << "Error in opening the file:"
<< err.getName() << endl;

exit(1);
}

catch(WriteError& err)
{

cerr << "Error writing to file: "
<< err.getName() << endl;

exit(1);
}
catch(ReadError& err)
{

cerr << "Error reading from file: "
<< err.getName() << endl;

exit(1);
}

return 0;
}

Preview from Notesale.co.uk

Page 700 of 846

681

More about Pointers
This chapter describes advanced uses of pointers.These include pointers

to pointers, functions with a variable number of arguments, and pointers

to functions.

An application that defines a class used to represent dynamic

matrices is introduced.

chapter30
Preview from Notesale.co.uk

Page 702 of 846

684 ■ C H A P T E R 3 0 M O R E A B O U T P O I N T E R S

Fixed arguments

First varying
argument

Varying arguments

Last varying
argument

va_start(argp,max)

char *buffer

int max

•

•

•

#include <stdarg.h>

int func(char *buffer, int max, ...)
{

va_list argptr; // Declares argument pointer.
long arg3;
. . .
va_start(argptr, max); // Initialization.
arg3 = va_arg(argptr, long); // Read arguments.

// To use argument arg3.
. . . .

va_end(argptr); // Set argument pointer to NULL.
}

■ VARIABLE NUMBER OF ARGUMENTS

Fixed and varying arguments on the stack

Scheme of a function with varying arguments

Preview from Notesale.co.uk

Page 705 of 846

694 ■ C H A P T E R 3 0 M O R E A B O U T P O I N T E R S

// matrix.h: Representing dynamic matrices.
// ---
#include <stdexcept>
#include <iostream>
using namespace std;

class Row
{

double *ro; int size;
public:
Row(int s) { size = s; ro = new double[s]; }
~Row(){ delete[]ro; }

double& operator[](int i) throw(out_of_range)
{if(i < 0 || i > size)

throw out_of_range("Column index: Out of Range\n");
else
return ro[i];

}
};

class Matrix
{

Row **mat; // Pointer to array of rows
int lines, cols; // Number of rows and columns

public:
Matrix(int ro , int co)
{ lines = ro; cols = co;
mat = new Row*[lines];
for(int i=0; i < lines; i++)

mat[i] = new Row(cols);
}

~Matrix()
{ for(int i=0; i < lines; i++)

delete mat[i];
delete[] mat;

}
int getLines() const { return lines; }
int getCols() const { return cols; }
Row& operator[](int i) throw(out_of_range)
{ if(i < 0 || i > cols)

throw out_of_range("Row index: Out of Range\n");
else
return *mat[i];

}
};

■ APPLICATION: DYNAMIC MATRICES

Class Matrix

Preview from Notesale.co.uk

Page 715 of 846

SOLUTIONS ■ 701

Exercise 4
// -- --
// matrix.h : Represents dynamic matrices
// ---
#ifndef _MATRIX_H_
#define _MATRIX_H_

#include <stdexcept>
#include <iostream>
using namespace std;

class Row
{

double *ro;
int size;

public:
Row(int s) { size = s; z = new double[s]; }
~Row(){ delete[]ro; }

double& operator[](int i)
{
if(i < 0 || i > size)
throw out_of_range("Row index: Out of Range\n");

return ro[i];
}
const double& operator[](int i) const
{
if(i < 0 || i > size)
throw out_of_range("Row index: Out of Range\n");

return ro[i];
}

};

class Matrix
{
private:
Row **mat; // Pointer to array of rows
int lines, cols; // Number of rows and columns

public:
Matrix(int ro , int co)
{
lines = ro; cols = co;
mat = new Row*[lines];
for(int i=0; i < lines; i++)

mat[i] = new Row(cols);
}
Matrix:: Matrix(int z, int s, double val);

Preview from Notesale.co.uk

Page 722 of 846

702 ■ C H A P T E R 3 0 M O R E A B O U T P O I N T E R S

Matrix(const Matrix&);
~Matrix()
{ for(int i=0; i < lines; i++)

delete mat[i];
delete[] mat;

}
int getLines() const { return lines; }
int getCols() const { return cols; }

Row& operator[](int i)
{
if(i < 0 || i > cols)

throw out_of_range("Row index: Out of Range\n");
return *mat[i];

}

const Row& operator[](int i) const
{
if(i < 0 || i > cols)

throw out_of_range("Row index: Out of Range\n");
return *mat[i];

}
// Assignments:

Matrix& operator=(const Matrix&);
Matrix& operator+=(const Matrix&);

};
#endif

// --
// matrix.cpp : Defines methods of class Matrix
// --
#include "matrix.h"

Matrix:: Matrix(int ro, int co, double val)
{

lines = ro; cols = co;
mat = new Row*[lines]; // Array of pointers to

// arrays of rows
int i, j;
for(i=0; i < lines; i++) // Arrays of rows:
{

mat[i] = new Row(cols); // Allocate memory
for(j = 0; j < cols; ++j)

(*this)[i][j] = val; // and copy values.
}

}

Preview from Notesale.co.uk

Page 723 of 846

704 ■ C H A P T E R 3 0 M O R E A B O U T P O I N T E R S

// --
// matrix_t.cpp : Tests dynamic matrices
// --
#include "matrix.h"
void display(Matrix& m); // Output a matrix.
int main()
{

Matrix m(4,5);
try
{
int i,j;
for(i=0; i < m.getLines(); i++)
for(j=0; j < m.getCols(); j++)
m[i][j] = (double)i + j/ 100.0;

cout << "Matrix created" << endl;
display(m);

Matrix cop(m);
cout << "Copy generated." << endl;
display(cop);

cop += m;
cout << "Compute the sum:" << endl;
display(cop);

Matrix m1(4, 5, 0.0);
cout << "Initializing a matrix with 0:" << endl;
display(m1);
m = m1;
cout << "Matrix assigned:" << endl;
display(m);

}
catch(out_of_range& err)
{ cerr << err.what() << endl; exit(1); }
return 0;

}

void display(Matrix& m)
{

for(int i=0; i < m.getLines(); i++)
{
for(int j=0; j < m.getCols(); j++)

cout << m[i][j] << " ";
cout << endl;

}
cin.get();

}

Preview from Notesale.co.uk

Page 725 of 846

706 ■ C H A P T E R 3 1 M A N I P U L A T I N G B I T S

Bitwise AND Bitwise inclusive ORResult Result

0 & 0

0 & 1

1 & 0

1 & 1

0 | 0

0 | 1

1 | 0

1 | 1

0

0

0

1

0

1

1

1

0 ˆ 0

0 ˆ 1

1 ˆ 0

1 ˆ 1

~0

~1

0

1

1

0

1

0

a = 5;

b = 12;

c = a & b;

c = a | b;

c = a ˆ b;

c = ~a;

unsigned int a, b, c;

0 0 0 0 1 0 1

0 0 0 1 1 0 0

0 0 0 1 1 0 1

0 0 0 1 0 0 1

1 1 1 1 0 1 0

0 0 0 0 1 0 0

Bit pattern

■ BITWISE OPERATORS

“True or False” table for bitwise operators

Examples

Preview from Notesale.co.uk

Page 727 of 846

BIT MASKS ■ 711

� Deleting Bits
The bitwise AND operator is normally used to delete specific bits. A so-called mask is used
to determine which bits to delete.

Example: c = c & 0x7F;

In the mask 0x7F the seven least significant bits are set to 1, and all significant bits are
set to 0. This means that all the bits in c, with the exception of the least significant bits,
are deleted. These bits are left unchanged.

The variable c can be of any integral type. If the variable occupies more than one
byte, the significant bits in the mask, 0x7F, are padded with 0 bits when integral promo-
tion is performed.

� Setting and Inverting Bits
You can use the bitwise OR operator | to set specific bits. The example on the opposite
page shows how to change the case of a letter. In ASCII code, the only difference
between a lowercase and an uppercase letter is the fifth bit.

Finally, you can use the bitwise exclusive OR operator ^ to invert specific bits. Each
0-bit is set to 1 and each 1-bit is deleted if the corresponding bit in the mask has a
value of 1.

Example: c = c ^ 0xAA;

The bit pattern for 0xAA is 10101010. Every second bit in the least significant eight
bits of c is therefore inverted.

It is worthy of note that you can perform double inversion using the same mask to
restore the original bit pattern, that is, (x ^ MASK) ^ MASK restores the value x.

The following overview demonstrates the effect of a statement for an integral expres-
sion x and any given mask, MASK:

■ x & MASK deletes all bits that have a value of 0 in MASK
■ x | MASK sets all bits that have a value of 1 in MASK
■ x ^ MASK inverts all bits that have a value of 0 in MASK.

The other bits are left unchanged.

Preview from Notesale.co.uk

Page 732 of 846

732 ■ C H A P T E R 3 2 T E M P L A T E S

template <class T>
T min(T x, T y)
{

return((x < y) ? x : y)
}

#include <cstring>

const char* min(const char* s1, const char* s2)
{

return((strcmp(s1, s2) < 0) ? s1: s2);
}

#include <cstring>

template<>
const char* min(const char* s1, const char* s2)
{

return((strcmp(s1, s2) < 0) ? s1: s2);
}

■ SPECIALIZATION

Function template min()

Specializing the function template for C strings

� ANSI specialization
The ANSI standard does not differ between template functions and “normal” functions.
The definition of a function template and a function with the same name, which can be
generated by the function template, causes the compiler to output an error message (ex.
“duplicate definition ...”).

That is why the ANSI standard provides its own syntax for defining specializations:

Preview from Notesale.co.uk

Page 753 of 846

SOLUTIONS ■ 743

template <class T>
void display(T* vp, int len)
{

cout << "\n\nThe array: " << endl;
for(int i = 0; i < len; i++)
{

cout << vp[i] << " ";
if((i+1)%10 == 0)

cout << endl;
}
cout << endl; cin.get();

}

// Two arrays for testing:
short sv[5] = { 7, 9, 2, 4, 1};
double dv[5] = { 5.7, 3.5, 2.1, 9.4, 4.3 };

int main()
{

cout << "\nInstantiation for type short: " << endl;
display(sv, 5);

insertionSort(sv, 5);
cout << "\nAfter sorting: ";
display(sv, 5);

short key;
cout << "\nArray element? "; cin >> key; cin.sync();
int pos = interpolSearch(key, sv, 5);
if(pos != -1)

cout << "\nfound!" << endl, cin.get();
else

cout << "\nnot found!" << endl, cin.get();
// ---
cout << "\nInstantiation for type double: " << endl;
display(dv, 5);

insertionSort(dv, 5);
cout << "\nAfter sorting: ";
display(dv, 5);

double dkey;
cout << "\nArray element? "; cin >> dkey; cin.sync();
pos = interpolSearch(dkey, dv, 5);
if(pos != -1)

cout << "\nfound!" << endl, cin.get();
else

cout << "\nnot found!" << endl, cin.get();

return 0;
}

Preview from Notesale.co.uk

Page 764 of 846

INSERTING IN SEQUENCES ■ 759

� Insertion Methods
The following methods are defined in the container classes vector, deque, and list

■ push_back() insert at end
■ insert() insert after a given position.

Additionally, the following method is available in the list and deque classes

■ push_front() insert at beginning.

This method is not defined in the vector class.
The insert() method is overloaded in various versions, allowing you to insert a sin-

gle object, multiple copies of an object, or object copies from another container. Given
two containers v and w the following

Example: w.insert(--w.begin(), v.begin(), v.end());

inserts the objects from container v in front of all the other objects in w. A container can
of course be assigned to another container of the same type. The assignment operator is
overloaded for containers to allow this operation.

� Runtime Behavior
The push_back() and push_front() methods are preferable on account of their
constant runtime. Insertion of one object with the insert() method also has a con-
stant runtime in the list class. However, this is linear in the vector and deque
classes, that is, the time increases proportionally to the number of objects in the con-
tainer.

This dissimilar runtime behavior for methods can be ascribed to the implementation
of various container classes. Normally, containers of the list type are represented by
double linked lists in which each element possesses a pointer to the preceding and fol-
lowing element. This allows for extremely quick inserting at a given position.

The container classes vector and deque are represented as arrays. Inserting in the
middle means shifting the objects in the container to make place for the new object.
Therefore the runtime will increase proportionally with the number of objects the con-
tainer holds.

� Insertion in Adapter Classes
There is only one insertion method for adapter classes: push(). In stacks and queues,
push() appends an object with a constant runtime. Insertion of objects into priority
queues depends on the priority of the object and the runtime is linear.

Preview from Notesale.co.uk

Page 780 of 846

768 ■ C H A P T E R 3 3 C O N T A I N E R S

Container Class Representing

set< class T,
class Compare = less<T>,
class Allocator = allocator<T> >

collections of objects with

unique keys

multiset< class T,
class Compare = less<T>,
class Allocator = allocator<T> >

collections of objects with

equivalent keys, i.e.

possibly multiple copies of

the same key value

map< class Key, class T,
class Compare = less<T>,
class Allocator = allocator<T> >

collections of objects/key

pairs where the keys are

unique

multimap< class Key, class T,
class Compare = less<T>,
class Allocator = allocator<T> >

collections of objects/key

pairs with possibly

equivalent keys

Container Class Header File

set< T, Compare, Allocator >

multiset<T, Compare, Allocator >

map< Key, T, Compare, Allocator >

multimap< Key, T, Compare, Allocator >

<set>

<set>

<map>

<map>

■ ASSOCIATIVE CONTAINERS

Container classes

Associative containers and header files

Preview from Notesale.co.uk

Page 789 of 846

ex
er
ci
se

778 ■ C H A P T E R 3 3 C O N T A I N E R S

9 queues have been created.

The queues will now be filled
using the hot potato algorithm.

Some elements of randomly selected
queues are removed.

Output the queues:

1.queue: 28 88 70 60 6
2.queue: 64 6 54 1
3.queue: 2 88 64 30 66 29 11 74 49 41
4.queue: 17 25
5.queue: 96 97 47 27 71 34 87 58
6.queue: 77 82 54
7.queue: 35 65 23 40 5 83 92
8.queue: 32 23 54
9.queue: 28 55 54 73 28 82 21 99

Router Exits

1. Queue

2. Queue

3. Queue

4. Queue

Entrance

■ EXERCISE

Hot potato algorithm

Test output

Preview from Notesale.co.uk

Page 799 of 846

You can also use two’s complement to compute the absolute value of a negative num-
ber. Two’s complement for -4 yields a value of 4.

Sign bits are not required for unsigned types. The bit can then be used to represent
further positive numbers, doubling the range of positive numbers that can be repre-
sented.

The following table contains the binary formats of signed and unsigned integral 8 bit
values:

If the bit-pattern of a negative number is interpreted as an unsigned number, the value
of the number changes. The bit-pattern 1111 1100 of the number �4 will thus yield
the following unsigned value:

0*20 + 0*21 + 1*22 + 1*23 + 1*24 + 1*25 + 1*26 + 1*27

that is, the decimal number 252.

Representing Floating-point Numbers
To represent a given floating-point number, x, the number is first broken down into a
sign, v, a mantissa, m, and a power, exp, with a base of 2:

x = v * m * 2exp

0000 0000
0000 0001
0000 0010
0000 0011

0111 1101
0111 1110
0111 1111

1111 1100
1111 1101
1111 1110
1111 1111

1000 0000
1000 0001

Binary Signed decimal Unsigned decimal

.

.

.

.

0
1
2
3

125
126
127
–128
–127

–4
–3
–2
–1

.

.

.

.

128
129

252
253
254
255

.

.

0
1
2
3

125
126
127

.

.

BINARY NUMBERS ■ 785

Preview from Notesale.co.uk

Page 806 of 846

■ LITERATURE

International Standard ISO/IEC 14882, Programming Languages—C++; published by
American National Standards Institute, New York NY, 1998.

International Standard ISO/IEC 9899:1999(E), Programming Languages—C; published by
ISO Copyright Office, Case postale 56, CH-1211, Geneva 20, 1999.

Stroustrup, Bjarne, The C++ Programming Language, Addison Wesley, 2000.

Josuttis, Nicolai, The C++ Standard Library, Addison Wesley, 1999.

LITERATURE ■ 801

Preview from Notesale.co.uk

Page 822 of 846

This page intentionally left blank

Preview from Notesale.co.uk

Page 823 of 846

803

Note: Italicized page locators indicate figures.

index

Symbols
&, 223, 231, 691
&&, 91
+, 50, 82, 85, 157
++, 85, 355
-, 82
--, 85, 355, 420, 755
*, 82, 233, 255, 355, 691, 755
/, 82
%, 82
->, 255, 755
=, 87
+=, 50, 87
-=, 87, 355
*=, 87, 157
/=, 87
%=, 87
==, 88, 159
!=, 88, 159
<, 88, 159
<=, 88, 159
>, 88, 159

>=, 88, 159
<<, 9, 88, 229, 429
>>, 44, 229, 429
::, 209
?:, 109
[], 691, 755
//, 91
/, 707
+-, 355
‘\n’, 51, 187
(), 691

A
Abstract classes, 565-585

concrete classes versus, 569
deriving, 569
and inhomogeneous lists, 574,

575-577
pointers and references to, 570
pure virtual methods for, 566
virtual assignment in, 572, 573

Preview from Notesale.co.uk

Page 824 of 846

dynamic storage allocation for, 460, 461
encapsulating, 333
initializing, 324, 325
length of, 357
member, 332
multidimensional, 330, 331
name and address of, 351
parameters declared as, 357
of pointers, 364
pointers moved in, 355
and pointer variables, 351
sample program, 350, 352
as sequential containers, 751
subscript operator for, 427

Arrow operator, 255
Article class, 287, 311

copy constructor of, 310
ASCII code (American Standard Code for Informa-

tion Interchange), 17, 800
Assignment operator, 87, 253, 412

overloading, 489
Assignments, 279, 488, 489

implicit type conversions in, 145, 531
type conversions in, 145, 532, 533
virtual, 572, 573. See also Compound assignments

Associative arrays, 427
Associative container classes, 769
Associative containers, 750, 751, 768, 769

and bitsets, 751
ATM (Asynchronous Transfer Mode) cells

header of, 714, 715
representing, 714

at() method, 165, 761
auto keyword, 205
Automatic lifetime, 199
auto objects, 205
auto specifier, 204

B
back() method

and container classes vector, deque, and list, 761
Backslashes, 29
bad_cast, 553
badbit, 645
Base classes, 383, 501

accessibility of, 589

access to members in, 503, 509
calling methods in, 513
conversions in references to, 535
converting to, 530, 531
multiple indirect, 590, 591
virtual, 592, 593
with virtual destructors, 548, 549

Base class object assignment, 533
Base class pointer conversion, 535
BaseE1 class, 575

defining, 574
Base initializers, 511, 595, 597, 655
Base subobject, 505
begin() method, 755, 769
Bell Laboratories, 3
Bias, 786
Bidirectional iterators, 755
Binary arithmetic operators, 82, 83
Binary bitwise operators, 713
Binary complement, 143
Binary mode

file opened in, 638
Binary operator, 415, 417

and operands, 82
Binary search algorithm, 643
Binary trees, 187
Binding, 551
Bit coded data, 707
Bit-fields, 714

defining, 715
Bitmap container class, 774, 775
Bitmaps

raster images represented with, 774, 775
Bit masks, 710, 711

creating, 713
using, 712

Bit patterns
retaining, 143

Bits
deleting, 711
manipulating, 777

Bitsets, 774, 775, 776, 777
associative containers and, 751
declaring, 775

Bitwise AND operator, 711
Bitwise exclusive OR operator, 711

INDEX ■ 805

Preview from Notesale.co.uk

Page 826 of 846

associative container, 769
base, 501
container, 753
defining, 246, 247
derived, 501
dynamic members of, 479, 480
dynamic storage allocation for, 458
example of, 246
exception, 611
friend, 424, 425
and friend functions, 423
and global functions, 51
I/O stream, 59
iterator, 755
multiply-derived, 588, 589
naming, 247
operators for, 413. See also Abstract classes;

Adapter classes; Base classes; Derived classes;
Type conversion for classes

class keyword, 247, 257
Class member access operator, 253
Class-specific constants, 309
Class template, 723

defining, 725
for sequences, 753

clear() method, 70, 645
for deleting objects in container classes, 765
for erasing containers, 771
and maps/multimaps, 773

Client class, 303
climits header file, 19
clog stream, 58, 59
close() method, 389
Closing files, 388, 389
CLS macro, 123
cmath header file, 41
Collision resolution, 658
Collisions, 658
Colons

after labels, 113
Command line arguments, 367

sample program, 366
Comma operator, 412

syntax for, 101
Commas

for separating member initializers, 301

Comments
C++ program with, 10
examples of, 11

Comparative operators, 88, 159, 355
Comparator class, 753
compare() function, 689
Comparisons

results of, 89, 159, 355
Compiler, 7
Complex declarations, 690

operators and, 691
rules for evaluating, 691

complex header file, 48
Compound assignments, 145

bitwise operators in, 713
demonstration of, 86
operators, 87

Compound conditions, 91
Concatenation operators, 50, 157
Concrete classes

abstract classes versus, 569
Conditional expressions, 109

compilation, 790
structogram for, 108

Conditional inclusion, 126, 127
Conditional operator precedence, 109
conio.h header file, 132
Constants, 23, 25

class-specific, 309
const_iterator type, 755
const keyword, 34, 36, 64, 223
const member object declaration, 303
Const objects/methods

accessing, 276, 277
pointers to, 361

Constructor calls, 594, 595
and initialization, 595
sample program, 268
in virtual base classes, 597

Constructors, 251, 465
Account class with, 266
for adapter classes, 757
calling, 269, 299
conversion, 442, 443
copy, 279
declaring, 267

INDEX ■ 807

Preview from Notesale.co.uk

Page 828 of 846

Fields
input, 71
output, 66

Field width
defining, 63
specifying, 67

File access
mode, 385
stream classes for, 382

File management
and file buffer, 381

File operations, 380, 381
Files, 381

buffers, 381
closing, 388, 389
default settings for opening, 386
determining positions in, 643
error handling when opening, 387
exception handling for, 646
extensions, 7
names, 385
opening/closing, 383, 385, 387, 638
open mode of, 386
positioning for random access, 640, 641, 642, 643.

See also Header files; Records
File scope

object defined with, 199
File state, 644, 645
File stream classes, 382, 383

functionality of, 383
in iostream library, 383

File streams, 383
definition, 385
sample program/creating, 384

Fill-characters
specifying for field, 67

fill() method, 67
Filter programs

using, 131
Filters, 131
find() method, 163

and maps/multimaps, 773
fixed manipulator, 65
Fixed point output, 65
Flags, 60

for open mode of file, 386

open mode, 387
positioning, 641
state, 645, 647

FloatArr class, 740
constructors in, 483
copy constructor for, 486, 487
data members of, 478
new declarations in, 488
new methods of, 490, 491
prototype of operator function for, 489
versions of, 479, 480, 481, 484, 485

Floating-point constants, 25
examples for, 24

Floating-point division, 413
Floating-point numbers, 17, 21, 25

formatted output of, 64
inputting, 73

Floating-point types, 20, 21
conversion of, to integral type, 145
conversion of, to larger floating-point type, 143
conversion of, to smaller type, 145

Floating-point values
types for, 16

float type, 21, 25, 331
for loops

syntax for, 99
Formatting, 61

options, 63
standard settings, 65

Formatting flags, 61
Formatting operator, 63, 67
for statement, 97

sample program, 100
structogram for, 98

Fraction class, 431
simplify() method of, 448

Fractions
calculating with, 430

Friend classes, 424, 425
declaring, 425
using, 425

Friend declaration, 423
Friend functions, 422, 423

declaring, 423
overloading operators with, 423
using, 425

INDEX ■ 811

Preview from Notesale.co.uk

Page 832 of 846

Initialization list, 325, 329
and arrays of pointers, 365

init() method, 247, 267
Inline functions, 125, 180, 181

definition of, 181
global, 273
and macros, 181, 183

inline keyword, 181
Inline methods, 272, 273
Input

errors, 73
fields, 71
formatted, 70
formatted, for numbers, 72
redirecting standard, 130, 131
stream classes for, 58
streams, 9

input() function, 686, 687
insertAfter() method, 577
Insertion methods

in sequences, 758
in vector, deque, and list container classes, 759

Insertion sort algorithm, 738
insert() method, 161, 485, 771

of class IndexFile, 652, 653
of class IndexFileSystem, 654, 655
and maps/multimaps, 773
of SortVec derived container class, 758

Instances, class, 51, 251
Instantiation

and template definition, 723
of template functions, 733
of templates, 726, 727

Institute of Electrical and Electronic Engineers, 20
Integer promotions, 140, 141
Integers, 17

computing parity of, 712
formatted output of, 62
inputting, 73
types for, 16

Integer types, 21
Integral constants, 23

examples for, 22
Integral numbers

displaying, 63
Integral promotion, 709

Integral types, 18, 19
conversion of, to floating-point type, 143
conversion of, to smaller type, 145
and operands for bitwise operators, 707

Integrated software development environment, 7
internal manipulator, 67
Internal static object, 203
International Organization for Standardization, 3
Interpolation search, 738
INT_MAX, 19
INT_MIN, 19
int type, 19, 23
Invalid indexes, 427
invalid_argument class, 620
I/O (input/output)

formatted/unformatted, 74, 75, 391
overloading shift operators for, 428
redirecting, 130, 131

iomanip header file, 48, 65, 66
ios baseclass

flags defined in, 386
ios::boolalpha flag, 69
ios class, 59
ios::seekdir type positioning flags, 641
iostream class, 59
iostream header file, 9
iostream library, 59

file stream classes in, 383
isLess() method, 282
islower(c) macro, 129
ISO. See International Organization for Standardiza-

tion
is_open() method, 389
is relationship, 500, 535, 589
istream class, 47, 59, 61
Iterating lists, 754
Iterator classes, 755
Iterators, 754

types of, 755

J
Jump table, 688, 689

K
kbhit() function, 132

814 ■ I N D E X

Preview from Notesale.co.uk

Page 835 of 846

what() virtual method, 647
while statement

structogram for, 96
structogram for break within, 112
syntax for, 97

Whitespace characters, 11
Width

bit-fields, 715
width() method, 67, 491
Wordbyte union

defining/using, 258
Write access

open mode for, 638
write_at() method, 642

WriteError type exception, 651
write() method, 391, 392, 393

of classes DepAcc and SavAcc, 648, 649
Write operation, 381
Writing

blocks of records, 390
characters, 75

X
XOR operator, 707

Z
Zero extension, 143

INDEX ■ 825

Preview from Notesale.co.uk

Page 846 of 846

