Applications of Integrals

Net Area: \(\int_a^b f(x) \, dx \) represents the net area between \(f(x) \) and the \(x \)-axis with area above \(x \)-axis positive and area below \(x \)-axis negative.

Area Between Curves: The general formulas for the two main cases for each are,

\[
\text{if } y = f(x) \Rightarrow A = \int_a^b [\text{upper function}] - [\text{lower function}] \, dx \\
\text{and } x = f(y) \Rightarrow A = \int_c^d [\text{right function}] - [\text{left function}] \, dy
\]

If the curves intersect then the area of each portion must be found individually. Here are some sketches of a couple possible situations and formulas for a couple of possible cases.

Volumes of Revolution: The two main formulas are \(V = \pi \int_a^b [(f(x))^2 - (g(x))^2] \, dx \) and \(V = \int_a^b A(y) \, dy \). Here is some general information about each method of computing and some examples.

Rings

\[
A = \pi \left(\text{outer radius}^2 - \text{inner radius}^2 \right)
\]

Limits: \(x/y \) of right/bot ring to \(x/y \) of left/top ring

Horz. Axis use \(f(x), g(x), A(x) \) and \(dx \)

Vert. Axis use \(f(y), g(y), A(y) \) and \(dy \)

Cylinders

\[
A = 2\pi \text{(radius)} \cdot \text{(width/height)}
\]

Limits: \(x/y \) of inner cyl. to \(x/y \) of outer cyl.

Horz. Axis use \(f(x), g(x), A(x) \) and \(dx \)

Vert. Axis use \(f(y), g(y), A(y) \) and \(dy \)

Ex. Axis: \(y = a > 0 \)

\[
\text{outer radius : } a - f(x) \\
\text{inner radius : } a - g(x)
\]

Ex. Axis: \(y = a \leq 0 \)

\[
\text{outer radius : } |a| + g(x) \\
\text{inner radius : } |a| + f(x)
\]

Ex. Axis: \(y = a > 0 \)

\[
\text{radius : } a - y \\
\text{width : } f(y) - g(y)
\]

Ex. Axis: \(y = a \leq 0 \)

\[
\text{radius : } |a| + y \\
\text{width : } f(y) - g(y)
\]

These are only a few cases for horizontal axis of rotation. If axis of rotation is the \(x \)-axis use the \(y = a \leq 0 \) case with \(a = 0 \). For vertical axis of rotation \((x = a > 0 \text{ and } x = a \leq 0) \) interchange \(x \) and \(y \) to get appropriate formulas.