Flow Cytometry

1. To know the basic principles behind flow cytometry
 - Flow cytometry is a technological process that allows for individual measurements of cell fluorescence & light scattering
 - The process is performed at rates of thousands of cells per second
 - This information can be used to individually sort or separate subpopulations of cells
 - Pre-requisites for flow cytometry: cells in single cell suspension, fluorescent probes & cytometer.
 - Principles of flow cytometry:
 - Light scattered by laser or arc lamp
 - Scatter can be Forward (FSC) – parallel or perpendicular or Side (SSC)
 - FSC- some similarities to size; SSC- some similarities to granularity & complexity
 - Specific florescence detection
 - Florescent & SSC detectors; FSC detector
 - Hydrodynamically focused stream of particles
 - Electrostatic particle separation for sorting
 - Multivariate data analysis capability

2. To understand the purpose of using fluorescent probes in flow cytometry
 - Florescence may be used in the detection of:
 - protein, RNA & DNA
 - DNA synthesis
 - Dye efflux
 - Organelle activity
 - Change in pH
 - Protein interactions
 - Cell movement & diversion
 - Mechanism of fluorescence:
 - the florescent molecule is excited by the excitation of laser.
 - this imparts E to electrons in the molecule which then released as the molecule relaxes.
 - the E is released as light.

3. To know the basic application of flow cytometry in clinical immunology/haematology

<table>
<thead>
<tr>
<th>Differential leukocyte counting</th>
<th>To measure population of specific WBC types. Example: T cell numbers in AIDS analysis or to determine a particular immune disorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunophenotyping</td>
<td>Identifies & quantifies populations of cells in heterogenous sample-blood, bone marrow or lymph. Useful in diagnosing hematological malignancies such as lymphomas & leukaemia</td>
</tr>
<tr>
<td>Cell-cycle analysis</td>
<td>Analyse replication states of the 4 distinct phases. Useful to look for cell aneuploidy associated with chromosomal abnormalities</td>
</tr>
</tbody>
</table>

Nora_bu2017