substitution instance
 - an argument that results from uniformly replacing the variables in that argument form with statements

valid argument form
 - a form in which every substitution instance is a valid argument

formally valid argument
 - one that is valid because of its form
 - if the premises are true, the conclusion must be true!

*necessary truth: a statement that cannot be false
 - i exist. so, bachelors are unmarried.
 - conclusion is a necessary truth – it is valid. the validity has nothing to do with the form and everything to do with the content of the conclusion.

conditional statement
 - an if-then statement
 - if... [antecedent],
 - then... [consequent]
 - hypothetical
 - can be true even if the antecedent or consequent is false

antecedent
 - if-clause of a conditional

consequent
 - then-clause of a conditional

stylistic variants
 - alternate ways of saying the same thing
 - stylistic variants on “if...then”:
 - given that a, b.
 - assuming a, b.
 - b if a.
 - a is a sufficient condition (enough) for b
 - b given that a.
 - b assuming a.
 - a only if b.
 - b is a necessary condition (requirement) for a
 - ^ convert to “if...then”

modus tollens (valid)
 - 1. If A, then B.
 - 2. Not B.
 - 3. So, not A.

hypothetical syllogism (valid) x = y, y = z, x = z
 - 1. If A, then B.
 - 2. If B, then C.
• find out whether the argument is valid or invalid

negations

<table>
<thead>
<tr>
<th>p</th>
<th>~p</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

p: opposite truth value

conjunctions

\[p \land q \]

<table>
<thead>
<tr>
<th>p / q</th>
<th>p . q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T / T</td>
<td>T</td>
</tr>
<tr>
<td>T / F</td>
<td>F</td>
</tr>
<tr>
<td>F / T</td>
<td>F</td>
</tr>
<tr>
<td>F / F</td>
<td>F</td>
</tr>
</tbody>
</table>

p . q: always false except when both conjuncts are true

disjunctions

*inclusive disjunction:

\[p \lor q \]

<table>
<thead>
<tr>
<th>p / q</th>
<th>p v q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T / T</td>
<td>T</td>
</tr>
<tr>
<td>T / F</td>
<td>T</td>
</tr>
<tr>
<td>F / T</td>
<td>T</td>
</tr>
<tr>
<td>F / F</td>
<td>F</td>
</tr>
</tbody>
</table>

p v q: always true except when both disjuncts are false

material conditionals

*if the antecedent is true and the consequent is false, then the conditional as a whole is false
*the material conditional: a type of conditional as being false only when the antecedent is true and the consequent is false

<table>
<thead>
<tr>
<th>p / q</th>
<th>p \rightarrow q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T / T</td>
<td>T</td>
</tr>
<tr>
<td>T / F</td>
<td>F</td>
</tr>
<tr>
<td>F / T</td>
<td>T</td>
</tr>
</tbody>
</table>