• Secondary markets can be exchanges (all offers are considered simultaneously and the price is set by supply and demand) or over the counter (OTC) markets (traders seek counterparties in a less organized manner);

• Terminology:
 - Broker: middleman who connects sellers and buyers;
 - Dealer: trades on his own account;
 - Market maker: offers buying and selling prices to other market participants;
 - Specialist: matches buying and selling offers according to auction mechanism but may also trade on his own account;

3. Double auctions

• Most exchanges are double auctions where both buyers and sellers bid for securities and the most generous offers are selected to participate in trades;

• Exchanges can be call auctions or continuous auctions:
 (1) In a call auction, the market is cleared once at the end of a bidding period by matching the maximum amount of buying and selling offers;
 (2) In a continuous auction, a new offer is matched immediately with existing offers if possible, otherwise, the new offer is added to the limit order book;

• Call auctions:
 - Selling offers: a piecewise constant non-decreasing function \(x \rightarrow s(x) \), the supply curve;
 - Buying offers: a piecewise constant non-increasing function \(x \rightarrow d(x) \), the demand curve;
 - The market is cleared by matching maximum number of trades: \(\bar{x} = \sup \{ x \mid s(x) \leq d(x) \} \), and the interval \(\left[\lim_{x \downarrow \bar{x}} d(x), \lim_{x \uparrow \bar{x}} s(x) \right] \) consists of the market clearing prices;
 - Market clearing can be interpreted as finding the social optimum: \(S(x) = \int_0^x s(z)dz \) and \(D(x) = \int_0^x d(z)dz \) may be interpreted as the cost of producing \(x \) units, and the value of consuming \(x \) units;
 - Market is cleared by minimizing the difference \(S(x) - D(x) \);

• Convex analysis:
 - For a real – valued function \(f \) on an interval \(I \) allowing are equivalent:
 (a) \(f \) is convex,
 (b) There is a non – decreasing function \(\emptyset : I \rightarrow R \) such that \(f(x) = f(\bar{x}) + \int_\emptyset^x \emptyset(z)dz \) for all \(x, \bar{x} \in I \)
 (c) \(f \) is differentiable on \(I \) except a set on a countable set, its derivative \(f' \) is non – decreasing and \(f' = f' = \emptyset \);

 Proof of \((b) \Rightarrow (a) \): Let \(x_i \in I \) such that \(x_1 < x_2 \) and \(\alpha_i > 0 \) such that \(\alpha_1 + \alpha_2 = 1 \).

 With \(x = \alpha_1 x_1 + \alpha_2 x_2 \), we have: \(f(x) - f(x_1) = \int_{x_1}^x \emptyset(x)dz \leq \int_{x_1}^x \emptyset(x)dz = \emptyset(x)(x - x_1) \)

 And \(f(x_2) - f(x) = \int_{x_1}^{x_2} \emptyset(x)dz \geq \int_{x_1}^{x_2} \emptyset(x)dz = \emptyset(x)(x_2 - x) \)

 Multiply the inequalities by \(\alpha_1 \) and \(- \alpha_2 \) and add up: \(f(x) \leq \alpha_1 f(x_1) + \alpha_2 f(x_2) \), thus \(f \) is convex.

 - Note that \(\emptyset \) in \((b) \) is not unique: any \(\emptyset \) with \(f' \leq \emptyset \leq f' \) will do;
 - Subgradient: A \(v \in R \) is a subgradient at \(\bar{x} \) if \(v \in [f'(\bar{x}), f'(\bar{x})] \); and the set of subgradients of \(f \) at \(\bar{x} \) is known as the subdifferential of \(f \) at \(\bar{x} \) and is denoted by \(\partial f(\bar{x}) \); Note that an \(\bar{x} \in I \) minimizes \(f \) over \(I \) if and only if \(0 \in \partial f(\bar{x}) \);
 - Back to market clearing, an \(\bar{x} \) minimizes \(S(x) - D(x) \) iff \(0 \in \partial(S - D)(\bar{x}) \), which means:
 \[0 \in [s_{-} - d_{-}(\bar{x}), s_{+}(\bar{x}) - d_{+}(\bar{x})] \]

• Limit order book (LOB): where the offers remaining after market clearing are recorded; LOB gives the marginal prices for buying or selling a given quantity at the best available prices;

• Flatter the curve \(s \), more liquid the market;

• Continuous auction: market is cleared very frequently;

• Limit sell orders above the best ask-price and limit buy orders below the best bid-price increase liquidity; A market order is an order to buy/sell a given amount at the best available prices, which reduce liquidity;

• Price per share \(S(x) = \frac{s(x)}{x} \), the convexity of \(S \) gives us: if \(x_1 < x_2 \)