Example 1: B=Blue, G=Green, R=Red and Y=Yellow

Consider a sample: YGBRBBRGYB, picked from a mixed bag. What is the modal colour?

Solution: The modal colour is Blue, because it appears most, with a frequency of 4.

Grouped Data

- For grouped data, we first identify the modal class i.e. the class interval with the highest frequency. The mode lies in this class and then calculate the mode using the formula

\[Mode = \ell + \frac{c(f_1 - f_0)}{2f_1 - f_0 - f_2} \]

Where \(\ell \) is the lower limit of modal class, \(f_1 \) is the frequency of the modal class, \(f_0 \) is the frequency of the class preceding the modal class, \(f_2 \) is the frequency of interval succeeding the modal class and \(c \) is the width of the modal class.

Example 2:

Find the modal test mark for the following data.

<table>
<thead>
<tr>
<th>Test Mark, x</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-10</td>
<td>3</td>
</tr>
<tr>
<td>10-15</td>
<td>7</td>
</tr>
<tr>
<td>15-20</td>
<td>2</td>
</tr>
<tr>
<td>20-25</td>
<td>4</td>
</tr>
<tr>
<td>25-30</td>
<td>4</td>
</tr>
</tbody>
</table>

Solution:

- We seek to invoke the formula

\[Mode = \ell + \left(\frac{c(f_1 - f_0)}{2f_1 - f_0 - f_2} \right) \]

Where 15-20 is the modal class, \(\ell = 15 \), \(f_1 = 7 \), \(f_0 = 5 \), \(f_2 = 2 \), and \(c = 5 \)

- Substituting yields

\[Mode = 15 + \left(\frac{5(7 - 5)}{2 \times 7 - 5 - 2} \right) = 16.42 \]
Quartiles for ungrouped data

Consider Data from Example 3:

Exercise 1: Find Q_1, Q_2 and Q_3.

Solution: $Q_1 = 4100$, $Q_2 = 4650$ and $Q_3 = 5200$

Quartiles for grouped data

Consider data from Example 4:

The Lower Quartile, Q_1:

Q_1 position $\frac{n}{4} = \frac{50}{4} = 12.5^{th}$ position. Hence Q_1 interval = [10 - 20] because the 12.5th observation falls within this class interval.

The formula for Q_1 is

$$Q_1 = O_{q_1} + \frac{c[n - f(<)]}{f_{q_1}}$$

Where Q_1 is the Lower Quartile, O_{q_1} is the lower limit of Q_1 Interval (class), n is the sample size (total number of observations), $f(<)$ is the cumulative frequency of the interval before the Q_1 interval, f_{q_1} is the frequency of the Q_1 interval and c is the width of the Q_1 interval.

Thus: $Q_1 = O_{q_1} + \frac{c[n - f(<)]}{f_{q_1}} = 10 + \frac{10\times(50 - 2)}{12} = 18.75$

Interpretation: 25% of the students got below 18.75 marks

The Second Quartile, Q_2 (Median)

Q_2, use position $\frac{n}{2} = \frac{50}{2} = 25^{th}$ position. Q_2 class interval = [20 - 30] because the 25th observation falls within these limits. The formula for Q_2 is