Find the derivatives of inverse functions.

The inverse of an ordered pair (x, y) is (y, x).

\[f(x) = y \iff x = f^{-1}(y). \]

Theorem: Let \(f(x) \) represent a differentiable on an interval. If \(f^{-1}(x) \) denotes the inverse of \(f(x) \), then \(f^{-1}(x) \) is differentiable at any \(x \) and

\[[f^{-1}(x)]' = \frac{1}{f'[f^{-1}(x)]} \]

where \([f^{-1}(x)]' \) denotes the derivative of inverse of \(f(x) \), \(f'(x) \) is the derivative of \(f(x) \) and \(f'[f^{-1}(x)] \neq 0 \).

Proof:
If \(f^{-1}(x) \) is the inverse of \(f^{-1}(x) \), then \(f[f^{-1}(x)] = f^{-1}[f(x)] = x \).

Differentiating \(f[f^{-1}(x)] = x \) applying chain rule:

\[\frac{df[f^{-1}(x)]}{dx} \cdot \frac{df^{-1}(x)}{dx} = 1, \text{ but } \frac{df[f^{-1}(x)]}{df^{-1}(x)} = f'[f^{-1}(x)] \text{ and } \frac{df^{-1}(x)}{dx} = [f^{-1}(x)]' \]

Thus \(f'[f^{-1}(x)] \cdot [f^{-1}(x)]' = 1 \) equation (1)

Dividing equation (1) by \(f'[f^{-1}(x)] \),

\[[f^{-1}(x)]' = \frac{1}{f'[f^{-1}(x)]}, \text{ where } [f^{-1}(x)]' \text{ is the derivative of the inverse of } f(x) \text{ and } f'[f^{-1}(x)] \neq 0. \]

The formula \([f^{-1}(x)]' = \frac{1}{f'[f^{-1}(x)]} \) can be used to find the derivative of an inverse...