Glycosidic bonds: protect the anomeric carbon from oxidization
Can be alpha or beta bonds
 Alpha = U shape
 Beta = S shape

Energy storage
 Starch
 Glucose storage in plants
 Composed of 2 types of glucose homopolymers
 - Amylose: unbranched polysaccharide formed exclusively of D-glucose.
 Alpha 1-4 linkages, forms a helix
 - Amylopectin: branched homopolysaccharide. Braches every 25-30
 monomers with alpha 1-5 linkages
 o The more branches = less soluble

Animals
 Glycogen – alpha 1-4 links between glucose monomers. Branches.
 Glucose = fuel – a series of oxidative reactions
 Releases energy (ATP), and “reducing power” (NADH)

Structure
 Plants
 Cellulose beta 1-4 links between glucose monomers
 Linear – no branching
 Lots of hydrogen bonding

Animals
 Chitin in insects

Glycosidic bonds:
\[\text{D-Fructose} \]
\[\alpha-D-Fructofuranose \]
\[\alpha-D-Fructopyranose \]