Chapter 10- Molecular Mixing and The Mole

- **Submicroscopic Particles**
 - Substances are made of submicroscopic particles
 - Ionic compounds
 - Made up of ions
 - Covalent compound
 - Made up of molecules
 - Elements
 - Made up of atoms

- **Electrical attractions between submicroscopic particles**
 - *Dipole-* separation of charge
 - Ex. Water molecule, have a slightly opposite and negative side
 - Opposite charges attract one another
 - Ex. Polar molecule (water) when in the presence of the ionic compounds
 - The positive ion is attracted to the negative end of the molecule
 - negative ion is attracted to the positive end of the molecule
 - This is called an ion-dipole attraction
 - Too many ion dipole attraction will disrupt the ionic bond
 - Ex. NaCl in H2O the water separates the NaCl and forms an **Aqueous solution** --> a solution in water

- **Polar Molecule attracts polar molecules**
 - dipole-dipole: An attraction between 2 polar molecules
 - ex. water
 - Hydrogen Bond: the attraction between hydrogen and the negatively charged atom of another molecule (oxygen)

- **The Hydrogen Bond**
 - The strength of a H bond depends on
 1. The strength of the dipoles involved
 2. How strongly nonbonding electrons in one molecule can attract a H atom on another molecule

- **Importance of the H bond**
 - Gives water many of its properties
 - Found in DNA, RNA, and carbohydrates

- **Dissolving**
 - The component that has the largest amount is the **solvent**
 - The other components are the **solute(s)**
 - Ex. Sugar mixed with water
 - Water- solvent
 - Sugar- solute
 - **Dissolving** - the mixing of a solute in solvent
 - **Saturated solution** - the solvent (water) cannot accept anymore solute (sugar)
 - Unsaturated solution - it can accept more solute

- **Solubility**
 - Solubility - the ability of a solute is its ability to dissolve in a solvent
 - **Insoluble** - a material that does not dissolve in a solvent
 - Ex. Insoluble in water: sand and glass
 - Just because a material isn't soluble in one solvent, doesn't mean it won't dissolve...
 - Ex. Sand and glass are soluble in hydrofluoric acid
 - Ex. Hydrofluoric acid is used to give frosted the decorative look
 - Ex. Styrofoam is insoluble in water, but soluble in acetone

- **Solubility and temperature**
 - solubility increases with increasing temperatures
 - Hot molecules have greater kinetic energy and can collide with the solid solute with more force
 - **Solids**
 - Ex. Sugar (sucrose), heat to almost a boil
 - This is how syrup and hard candy are made
 - **Gases**
 - Solubility of gases in liquids decrease with increasing temperatures
 - Particles are moving too fast
 - This is why warm carbonated drinks (soda) go "flat" faster than cold
 - High temp. Makes the molecules of CO₂ gas leave the drink faster