Time Value of Money

Compounding: \(FV = PV \times (1 + r)^n \) - Figures out the compound interest where \(FV = \) future value, \(PV = \) present value, \(r = \) interest, \(n = \) number of periods.

Discounting is sort of the same as Compounding, but £1 tomorrow is viewed less than £1 today.

Discounting:

\[PV = FV \times \frac{1}{(1 + r)^n} \]

Future cash flows need to be discounted in order to take into account the opportunity cost of an investment (OCI)
- Funds tied up in investment projects could have been used elsewhere to earn a return
- Funds tied up in investment are costly, since returns are required by the providers of finance

Net Present Value

It involves discounting all future cash flows to their present value. The sum of all present values less the initial costs gives the net present value (NPV).

Decision rule:
- Accept project if NPV > 0
- Accept project with the highest NPV.

<table>
<thead>
<tr>
<th>Year</th>
<th>Discount factor (10%)</th>
<th>Project A</th>
<th>Project B</th>
<th>Project C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CF £</td>
<td>PV £</td>
<td>CF £</td>
</tr>
<tr>
<td>0</td>
<td>1.000</td>
<td>-1,000</td>
<td>-1,000</td>
<td>-1,000</td>
</tr>
<tr>
<td>1</td>
<td>0.909</td>
<td>600</td>
<td>545</td>
<td>700</td>
</tr>
<tr>
<td>2</td>
<td>0.826</td>
<td>400</td>
<td>331</td>
<td>400</td>
</tr>
<tr>
<td>3</td>
<td>0.751</td>
<td>300</td>
<td>225</td>
<td>600</td>
</tr>
<tr>
<td>4</td>
<td>0.683</td>
<td>300</td>
<td>205</td>
<td>700</td>
</tr>
<tr>
<td>NPV</td>
<td></td>
<td>306</td>
<td></td>
<td>714</td>
</tr>
</tbody>
</table>

Internal Rate of Return (IRR)

It is equivalent to the discount rate \((r) \) that will cause the NPV of an investment to be zero (0).

Decision rule:
- Accept project if IRR ≥ company’s cost of capital
- Accept project with the highest IRR

\[
IRR = r_1 + \frac{NPV_1}{NPV_1 + NPV_2} (r_2 - r_1)
\]

\(r_1 = \) discount rate that gives a positive \(NPV_1 \)
\(r_2 = \) discount rate that gives a negative \(NPV_2 \)
\(NPV_1 = \) the positive NPV obtained by applying discount rate \(r_1 \)
\(NPV_2 = \) the negative NPV obtained by applying discount rate \(r_2 \)