The ‘apparent viscosity’ decreases with decreases vessel diameter
Haematocrit in many arterioles is lower than the systemic arterioles
 o Flow resistance is lower than expected from systemic viscosity
 o However, resistance still depends on haematocrit

White cells and platelets have negligible effects on blood viscosity

Clinical/Physiological Indices
BLOOD: done routinely
 • Haematocrit
 o Oxygen carrying capacity
 o Blood viscosity
 • Erythrocyte sedimentation rate (ESR)
PLASMA: only in research
 • Plasma viscosity
 o Affects blood viscosity
 • Fibrinogen concentration
RBCs:
 • Blood content
 o Haematocrit
 o Red Cell count
 o HB concentration in blood
 • Cellular Characteristics
 o Mean cell volume (MCV of red cell)
 o Mean cell haemoglobin (MCH)
 o Mean cell haemoglobin concentration (MCHC)

Consequences of Anaemia (low viscosity)
 o Reduced O2 carrying capacity
 o Oxygen saturation likely to be normal
 o Reduced viscosity and resistance to flow
 o Cardiac output may be high

Blood Rheology and Circulatory Pathology
1. Hyperviscosity Syndromes
 a. Elevated immunoglobulins
 b. Haematocrit (polycythaemia – genetic disorder or smoking in response to carbon monoxide)
 c. Hyperleukotic leukaemia
 d. Abnormal RBCs? E.g. sickle cell or malaria
2. Acute Phase Response (chronic) – response to damage or trauma
 a. Atherosclerotic
 b. Vascular disease
 c. Diabetes
 d. Smoking
 e. Increases fibrinogen \(\rightarrow \) increased plasma viscosity (and blood viscosity), increase RC aggregation, increased ESR