• Fenestrated – Have holes in endothelium but have continuous BM
 ▪ Kidney and gut mucosa
• Sinusoids – Incomplete BM and Large intracellular gaps
 ▪ Have a glycocalyx that is -vely charged – has a barrier function

- Endothelial BM
 ▪ Polarised cells with distinct expression of receptors on apical and luminal sides
 ▪ Endothelial luminal membrane resides on a BM and is associated with extracellular matrix – collagen (4,3,1), fibronectin, laminin

- Endothelial intracellular junctions – tighter on arterial side – looser on post capillary venules
 ▪ 3 barriers to paracellular transport (cell to cell connection)
 ▪ Tight junctions
 ▪ Claudins (Cldns) – the more the tighter the junctions
 ▪ Occludins (ocln)
 ▪ Junctional adhesion molecules
 ▪ Adherens junctions
 ▪ Gap junctions – connexions
 ▪ Junctional proteins and integrins (cell to BM) are connected to the actin cytoskeleton of the EC – allows some communication

- Continuous endothelium
 ▪ Paracellular transport - Water & small solutes (<3mm) pass between ECs
 ▪ Transcytosis - Allows passage of larger solutes e.g. albumin (uses transendothelial channel)
 ▪ Caveolae - Smooth membrane invaginations and vesicles = highest density in capillary EC (vesicles move through the membrane and dump on the other side)
 ▪ Transendothelial channels

- Fenestrated continuous endothelium
 ▪ Glomerular endothelium, vessels within endocrine & exocrine glands gastric & intestinal mucosa
 ▪ Fenestrae/pores have a diaphragm – may increase selectivity of the pore – no albumin or peptide hormones (angiotensin)
 ▪ Fenestrations permit greater transendothelial transport of fluids ad solutes – not macromolecules

- Sinusoidal endothelium
 ▪ Liver, spleen, bone marrow
 ▪ Smaller ECs – clear colloids and soluble waste macromolecules from the circulation
 ▪ Large fenestrations
 ▪ BM has gaps
 ▪ High endocytic activity in clathrin-coated pits – (receptor mediated and fluid phase endocytosis
 ▪ For mass transport – allow bulk flow

- Vesicular-Vacuolar organelles (VVO)
 ▪ A major route for transport of fluids and solutes across the endothelium particularly in inflammatory situations
 ▪ From transcellular channels when they connect
 ▪ Particularly at post capillary venules
 ▪ Vacuoles join together and allow large bulk transport (leukocytes, large molecules)

Endothelium and haemostasis
• Provides a non-thrombogenic surface to maintain blood flow
 ▪ Inhibits the activation of coagulation factors
 ▪ Breaks down clots that start to form
 ▪ Inhibits platelet adhesion/activation

• Anti-coagulant properties of endothelium
 ▪ Tissue factor pathway inhibitor – binds to FXa, FVIIa, TFa to block activation of the extrinsic pathway
 ▪ Anti-thrombin III – localised with hepara sulphate proteoglycans (glycocalyx) binds and inactivates thrombin
 ▪ Thrombomodulin – converts thrombin into a Protein C activator