2) Constipation.
3) Blurred vision.
4) Dry mouth \(\rightarrow\) this is sometimes actually desirable if sialorrhoea is a problem. This is where there is excess saliva production and accumulation due to reduced ability to salivate. Muscarinic antagonists help to reduce these secretions.

- **Examples** \(\rightarrow\) BENZHEXOL + BENZATROPINE.

Dopaminergic Drugs:

- **LEVODOPA:**
 - Levodopa is the gold standard treatment of Parkinson's Disease but should **not** be used as a first line therapy due to the **long-term** side effects.
 - The drug is delivered as a **natural dopamine precursor** so that it can use an **amino-acid transporter** to enter the brain (dopamine alone cannot do this).
 - Once inside the brain, Levodopa is converted to dopamine via **DOPA DECARBOXYLASE**.
 - However, the enzyme Dopa Decarboxylase is also present in the **periphery in the intestinal wall**. If taken alone, then 90% of Levodopa would be converted to Dopamine in the gut resulting in no effect in the brain and just nausea.
 - To avoid the peripheral metabolism of Levodopa, levodopa is **co-administered** with a **peripherally-acting** Dopamine Decarboxylase inhibitor.
 - This is either **carbidopa** (as sinemint) or **benserazide** (as madopar).
 - Some of the Levodopa may be converted by the **plasma Catechol-O-Methyl-Transferase (COMT) enzyme**. This affects 5% of the levodopa.
 - To avoid this a **COMT inhibitor** is used (like entacapone) as an **adjunct**.
 - These use of the two adjuncts ensures that **most of the Levodopa enters the brain unchanged**.
 - The Dopamine Decarboxylase in the brain produces **Dopamine** in both **Dopaminergic** and **Serotoninergic** neurones.