-SE (side effects): hypokalemia, dehydration, hyperglycemia, hyperuricemia

• Loop diuretics (furosemide) not routinely used for HTN
 - produce much greater diuresis than thiazides
 - reduce BP and promoting vasodilation
 - mainly used for greater diuresis needed or a patient with low GFR
 - side effects similar to thiazide diuretics**

• Potassium sparing diuretics (spironolactone)
 - diuresis small
 - can balance potassium loss found in other two types of diuretics
 - most important side effect: hyperkalemia
 - should not be used with potassium supplements, ACE inhibitors, angiotensin II receptor blockers, aldosterone antagonists (b/c they all promote hyperkalemia)
 • Can reduce BP when used alone or enhance effects of other hypotensive drugs

 Beta-1 Adrenergic Blockers

• E.G. Propranalol
• Suppress SNS effect on heart & blood vessels
 – Block cardiac beta receptors to decrease HR & contractility
 – Suppress tachycardia
 – Block beta 1 receptors on kidney cells to reduce renin release
 – Reduce peripheral vascular resistance
• SE’s
 – Bradycardia, decreased atrioventricular conduction, reduced contractility, bronchoconstriction, can mask s/s hypoglycemia

• How they reduce BP is uncertain
• 4 uses of beta blockers:
 -blocks cardiac beta receptors decreasing heart rate and contractility → cardiac output declines
 - suppress reflex tachycardia caused by vasodilators
 - blockade of beta receptors of the kidney reduces the release of kidneys
 - long term use reduces peripheral vascular resistance (mechanism unknown)

• Patients should not use it if they have asthma
• Glycogensis- converts glycogen into glucose
 - glucose levels rise
• If beta blockers are administered during glycogensis, the glucose levels fall too low

• Beta blockers also block beta 1 receptors in the heart
• Beta blockers decrease tremors, perspiration
• Tremors are NOT a good indicator of hypoglycemia
• Perspiration NOT a good indicator of hypoglycemia