Physiologic Adaptations to Reduced CO

• Cardiac dilation
 — Results from
 • reduced contractile force: lowers amount of blood ejected during systole, causing end-systolic volume to rise
 • Increased venous pressure: increases diastolic filling, which causes heart to expand
 — As heart fails, its volume expands & contractile force increases causing an increase in stroke volume

• Heart tries to adapt
 - some changes work for a little bit, but some other changes make the heart worse (even the good changes only work for a period of time)
 - heart gets larger (find definition for this)
 - causes more force, cardiac output increases for a period of time
 - heart starts to fail ¬ volume expands

• Frank-Starling law of the heart (look up)
 - if heart cannot keep up with the force of blood in the ventricles, there is an increase in diastolic volume (starts to accumulate)
 - when heart stops pumping, the blood accumulates over time
 - ejection fraction goes down

• Increased sympathetic tone
 • Increase HR: If HR increases too much, there will be insufficient time for ventricles to fill & CO falls
 • Increase contractility: Increases oxygen demands of heart
 • Increase venous tone: If venous pressure too high, blood backs up from failing ventricles & leads to pulmonary & peripheral edema; can also further dilate heart
 • Increase arteriolar tone: Heart must pump against greater resistance & in HF the heart may not be able to pump any harder so CO falls

• Not only does the heart get bigger to work more effectively, but the heart rate increases
 - If heart rate increases too much, the ventricles do not have time to contract and the chamber fills
 - heart muscle contractions increase in order to keep up with the decreased perfusion of tissues (oxygenated blood is supposed to go to the tissues)
 - also increased venous tone and arterial tone