• Acetylcholine makes t-type calcium channels less permeable which makes reaching threshold slower and potassium channels more permeable which causes hyperpolarization
 o Affects parasympathetic system
 o Slows heart rate
• Heart beat:
 o 1. Action potential in sinoatrial node spreads through electrically coupled cells of atria
 o 2. Atria contract simultaneously
 o 3. Atrioventricular node is stimulated by depolarization of atria
 o 4. With a slight delay, it generates action potentials that are conducted toward the ventricles via the Bundle of His
 ▪ Consists of modified muscle fibers that don’t contract but conduct action potentials
 o 5. Action potentials are split into each ventricle then spread through the ventricular mass as purkinje fibers
 ▪ Ensures that action potentials spreads rapidly
 ▪ Contract longer because calcium channels stay open
 o 6. Calcium is rapidly cleared from sarcoplasm by pumps to terminate systole
• Red blood cells:
 o Hematocrit is the percent of blood volume made up of red blood cells
 o Packed with hemoglobin
 o Flexible with large surface area
 o Generated by stem cells in bone marrow
 o Spleen has many cavities that are reserves for red blood cells
• Bone marrow also produces platelets
• Walls of arteries have many extracellular collagen and elastin fibers which enables them to withstand high blood pressure generated by the heart
• Elastic tissues are stretched during the systole and absorb some of the energy imparted to the blood by the heart
 o Recoil diastole and returns energy to blood, pushing it forward
• Smooth muscle in arteries constrict or dilate the vessels
 o Diameter changes = resistance to blood flow changes = amount of blood changes
 o Neural and hormonal mechanisms act on these smooth muscles
• Capillaries:
 o Thin and permeable
 o Around most cells so they can get material they need which exchanged from blood to interstitial fluid
 o Blood flows slowly through to allow for maximum exchange
 o Pressure is decreased in capillaries because there are so many that it diffuses throughout them all
 o On arterial side the pressure is higher and squeezes water and solutes into intercellular space between cells and capillary walls
 ▪ Osmotic pressure pulls water back in
 ▪ If blood pressure is above osmotic pressure, fluid leaves capillaries
 o At the venule end, blood pressure falls below osmotic pressure and fluid returns to the capillaries