- Renewable
- Lots of energy
- Common element

- Disadvantages
 - Expensive
 - High pressure
 - Explosive/flammable
 - Hydrogen is manufactured using fossil fuels

Topic 6- Groups in the periodic table

Elements in the periodic table are split into groups depending on the column (period) they are in. Elements are arranged by number of electrons in the outer shell.

Group 1- Alkali metals

- Properties
 - Soft
 - Low melting points
 - Dull

- Reactions with water
 - Lithium
 - Small fizzing
 - Disappears
 - Sodium
 - Fizzes rapidly
 - Moves around surface
 - May burn with orange flame
 - Potassium
 - Moves around surface rapidly
 - Lilac flame
 - May explode
 - Hydrogen ignites immediately

- Order of reactivity: alkali metals

<table>
<thead>
<tr>
<th>Physical state</th>
<th>Yellow-green</th>
<th>Red-brown</th>
<th>Purple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine</td>
<td>Gas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromine</td>
<td>Liquid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodine</td>
<td>Solid</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Further down the table, the higher the melting point
 - Gases to solids
- Further down the table, the darker the element

Chemical test: Chlorine
- Sharp, choking smell
- Damp blue litmus turns red then bleaches white
- Damp starch-iodine paper turns blue black

Halogen reactions:
- Halogens and metals
 - Forms salts called metal halides
 - $\text{sodium} + \text{chlorine} \rightarrow \text{sodium chloride}$
- Hydrogen halides
 - One part halogen, one part hydrogen
 - Dissolve in water to become acidic solutions
- Halogens in aqueous solution
 - The most reactive halogen displaces and becomes part of the solution
 - Solution turns colour of displaced solid
- Displacement reactions
 - Same as above
 - Redox because halogens gain electrons, halides lose electrons
 - $\text{I}^{-} + \text{Br}_2 \rightarrow \text{I}_2 + 2\text{Br}^-$
 - Bromine gains electrons- reduced iodide loses electrons- oxidised

Becomes less reactive as it goes down table
- Each additional shell shields electrons from attraction of the nucleus
- Needs to gain 1 electron and has less force of attraction as it goes down the table

Group 0- Noble gases
- Chemically inert
 - Has a full outer shell
- Uses
 - Lightbulb
 - Inertness
 - Non-flammable
 - Balloons

- Each additional shell shields electrons from attraction of the nucleus
- Less strength of bond

Group 7- Halogens

<table>
<thead>
<tr>
<th>Colour</th>
<th>Chlorine</th>
<th>Bromine</th>
<th>Iodine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gas</td>
<td>Liquid</td>
<td>Solid</td>
</tr>
</tbody>
</table>

- Yellow-green
- Red-brown
- Purple

- Further down the table, the higher the melting point
 - Gases to solids
- Further down the table, the darker the element
Topic 7 - Rates of reaction and energy changes

Physical properties
- Low density
- Non-flammable

Marble chips and hydrochloric acid
- Put a small pile of marble chips in the bottom of a conical flask
- Drip hydrochloric acid onto it
- Gas travels down tube, into upside down test tube in water trough
- CO₂ collects in the top

2HCl + CaCO₃ → CaCl₂ + H₂O + CO₂

Sodium thiosulphate and hydrochloric acid
- Put a small amount of sodium thiosulphate in a conical flask
- Put the flask on a piece of paper with a cross on it
- Add hydrochloric acid
- Wait for sulphur to be formed and turn the liquid cloudy, so the cross appears to disappear

Na₂S₂O₃ + 2HCl → 2NaCl + S + SO₂ + H₂O

Rate of reaction
- Measure mass before and after
 - Reactant
 - Product

Rate of reaction = change in mass/time taken

Reactions
- Occur when particles collide
- Increase with increase in:
 - Frequency of collisions
 - Energy of collisions
- Catalyst: substance that speeds up rate of reaction without altering products, without changing chemically or in mass
- Catalyst lowers activation energy
- Creates alternate pathway
- Enzymes are biological catalysts
 - Used to produce alcoholic drinks

Heat changes in chemical reactions

Changes in energy
- Exothermic
 - Give out energy to surroundings
 - Neutralisation
 - Respiration
 - Combustion
 - Making of bonds
- Endothermic
 - Take in energy from surroundings
 - Electrolysis
 - Thermal decomposition
 - Photosynthesis
 - Breaking of bonds

Energy change = total (bond breaking)/Total (bond making)

Fractional distillation:
- Separates all parts of crude oil
- Industrial fractional distillation:
 - The higher the tower, the cooler the temperature
- When condensed, liquid is siphoned off separately

Heat changes in chemical reactions

Topic 8 - Fuels and Earth science

Hydrocarbons: only hydrogen and carbon

Crude oil:
- Complex mixture of hydrocarbons
- Contains molecules where carbon atoms are in chains or rings
- Important source of useful substances
 - Fuels
 - Feedstock for petrochemical
- Finite