Changes not necessarily obvious as ecosystem can be resistant

Modelling population growth – mathematical models

- Birth rate must be greater than death rate

EXponential growth model

- Exponential = increase that becomes more and more rapid (upwards curve)
- \(N_0 = \) initial number of individuals
- \(i = \) increase
- \(t = \) time
- \(r = \) rate of growth

\[N_t = N_0 \times i^t \]

- \(e = \) base rate of continuous growth/decay, irrational number, 2.718...
- Any system which grows (or decays) exponentially can be defined using \(e \)
- Equation above works with annual growth but to describe continuous growth we use \(e \)

\[N_t = N_0 e^{rt} \]

logistic growth model

- Resources like food, water, space limit exponential growth
- Carrying capacity of an area = \(K \)
- Population growth starts slowing down when \(N \) is reaching \(K \)
- When \(N \) reaches \(K \) population growth stalls

\[\frac{dN}{dt} = rN \left(\frac{K-N}{K} \right) \]

‘All models are wrong, but some are useful.’ – George Box, 1979, GB

Quantifying change:

Baseline
The environment's starting point before change

- Not always easy to determine
- Cyclicity = when data is fluctuating (~ line)
- Sometimes long-term data is needed

Sample

- Representative subset of a population
- E.g. you can't count all the trees in a forest – you need a sample
- Sample needs to be representative of species richness
- Rarefaction curve = graph showing number of species in different sample sizes

 – When curve flattens out – you know sample is representative
- Also consider proportion of different species – what the most/least common species?

 – Record percentages %