11. Mark each as true or false. If the statement is false, correct the statement so that it is true. (16 points)

a. The columns of an 3×8 matrix are linearly independent.

more vectors than entries $\Rightarrow L.D.$
False

b. Asking whether linear system corresponding to the augmented matrix $[a_1, \ a_2, \ a_3, \ b]$ has a solution amounts to asking whether b is in $\text{Span} \{ a_1, \ a_2, \ a_3 \}$.

True

c. If A is a 5×3 matrix and T is a linear transformation defined by $T(x) = Ax$, then the domain of T is \mathbb{R}^5.

$\mathbb{R}^5 \rightarrow \mathbb{R}^5$ False the domain is \mathbb{R}^3
and the codomain is \mathbb{R}^5.

False

d. The set $\text{Span}\{u, \ v\}$ is always visualized as a plane through the origin for any vectors u and v, where vectors u and v are in \mathbb{R}^3. and \bar{u} and \bar{v} are not scalar multiples of each other.

False

e. If A is a 4×4 matrix, then the transformation $x \mapsto Ax$ maps \mathbb{R}^4 onto \mathbb{R}^4.

False. if there are four pivots, one in each row.

f. If x and y are linearly independent, and if $\{x, \ y, \ z\}$ is linearly dependent, then z is in $\text{Span}\{x, \ y\}$.

True

g. Every linear transformation is a matrix transformation.

False. Derivatives are LT.
Every matrix transformation is a linear transformation.

h. A linear transformation $T: \mathbb{R}^n \rightarrow \mathbb{R}^m$ always maps the origin of \mathbb{R}^n to the origin of \mathbb{R}^m.

True.