PLANE GEOMETRY

Plane geometry is all about shapes, like lines, circles and triangles that are drawn on same flat surface called plane.

TRIANGLE

When base, b and height, h is given:

\[A_T = \frac{1}{2}bh \]

When two sides, a and b and an included angle \(\theta \) is given:

\[A_T = \frac{1}{2}ab \sin \theta \]

When three sides, a, b and c is given: Hero's Formula:

\[s = \frac{a+b+c}{2} \]

\[A_T = \sqrt{s(s-a)(s-b)(s-c)} \]

When angles A, B and C and one side, a is given:

\[A_T = \frac{a^2 \sin B \sin C}{2 \sin A} \]

RECTANGLE

Area: \(A = ab \)

Perimeter: \(P = 2(a+b) \)

Diagonal: \(d = \sqrt{a^2 + b^2} \)

SQUARE

Area: \(A = a^2 \)

Perimeter: \(P = 4a \)

Diagonal: \(d = a\sqrt{2} \)

GENERAL QUADRILATERAL

When diagonal, \(d_1 \) and \(d_2 \) and included angle, \(\theta \) are given:

\[A = \frac{1}{2}d_1d_2 \sin \theta \]

When four sides, a, b, c and d and included angle, \(\theta \) are given:

\[A = \sqrt{(s-a)(s-b)(s-c)(s-d) - abcd \cos^2 \theta} \]

Where:

\(\theta = \frac{1}{2} \) (sum of two opposite angles)

Cyclic Quadrilateral

Radius of circumscribed circle:

\[r = \frac{\sqrt{(ab+cd)(ac+bd)(ad+bc)}}{4A} \]

REGULAR POLYGONS

Equilateral polygons are polygons with equal sides

Equiangular polygons are polygons with equal interior angles

Regular polygons are polygons that are both equilateral and equiangular.

Exterior angle: \(\theta = \frac{360^\circ}{n} \)

Area: \(A = \frac{1}{2}nr^2 \sin \theta \)

Perimeter: \(P = (n)r \)

Interior angles: \(\frac{n-2}{n} \times 180^\circ \)