Representative Elements

- Atoms lose or gain valence electrons to gain a noble gas electron configuration.
 - O: 1s2 2s2 2p4
 - O\(^2-\): 1s2 2s2 2p6
 - Al: [Ne] 3s2 2p1
 - Al\(^3+\): [Ne]

 Al\(^3+\) and N3- are isoelectric with Ne.

- Isoelectric - same number of electrons

Transition Metals:

- Form cation by removing electrons first “s” then “d” electrons
 - Mn\(^2+\), Fe\(^2+\), Fe\(^3+\)
 - Fe: [Ar] 4s2 3d6
 - Fe\(^2+\): [Ar] 3d6
 - Fe\(^3+\): [Ar] 3d5

Lecture 3.30.17

- Same group → same # and type of valence electrons.
- Periodic law - if arrange elements by Z, their chemical and physical properties vary periodically.
- Electrons are both attracted to the nucleus and repelled by other electrons.
 - Effective nuclear charge (Z\(_{\text{eff}}\)) - “positive charge” felt by an electron.
 - Z\(_{\text{eff}}\) = Z (#pt) - # of inner core e-
 - Z\(_{\text{eff}}\) = Z - \(\sigma\)
 - Effective nuclear charge increases as you go upper right diagonally on the periodic table.
- Atomic radius (atomic size) - one-half the distance between the 2 nuclei in 2 adjacent atoms.
○ Exactly the opposite of effective nuclear charge, and it increases as you go lower left diagonally.
○ Larger Z_{eff} → stronger hold of nucleus on e- → smaller the atomic radius
○ ↓ across a period
 ■ ↑ # of protons but small shell of e-
● Put in order of decreasing atomic radius
 ○ P, Si, N
 ■ Si > P > N
 ○ C, Li, Be
 ■ Li > Be > C
● Ionic Radius
 ○ Size of an ion.
 ○ Cation (+) is smaller than the corresponding atom from which it came.
 ■ Often loses its outer shell
 ■ Nuclear charge remains the same but fewer electrons (atom shrinks)
 ○ Anion (-) is larger than the corresponding atom from which it came.
 ■ Nuclear charge remains the same but more e- (weaker so expands)
 ○ Summary: cation < atom < anion
● Comparing Ions to each other
 ○ Ions in the same group (family)
 ■ Increases down a group (if same charge)
 ● Size of shell increases as you go down a group.
 ○ Isoelectronic ions

<table>
<thead>
<tr>
<th></th>
<th>Z (#pt)</th>
<th>#e-</th>
</tr>
</thead>
<tbody>
<tr>
<td>S$^{2-}$</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>Cl$^{-}$</td>
<td>17</td>
<td>18</td>
</tr>
</tbody>
</table>
Ionization energy and metallic character
 - Metallic character based on IE
 - More metallic character: more the element exhibits physical and chemical properties of metals.
 - Reactive metal → loses e- to form cation
 - Lowest IE → more metallic character

Practice Ionization Energy
 - Which has the larger 1st IE?
 - K, Ca: Ca
 - I, F: F
 - Which has the larger 2nd IE?
 - Li, Be: Li (its harder to destroy a noble gas as Li is already at its 1st IE)
 - Li+: I₂ + X⁺ (g) → X²⁺ (g) + e⁻ IE
 - Order the elements from smallest 2nd IE to largest
 - Na, Mg, Al
 - Na: [Ne]
 - Mg: [Ne] 3s²
 - Al⁺: [Ne] 3s²
 - Mg < Al < Na

Electron affinity (EA) - how strongly an atom gains electrons
 - Energy change that occurs when an e⁻ is added to a gaseous atom
 - ΔH = EA = -energy
 - EA increases as you go upper right diagonally.
 - Low EA = hard to gain e⁻
 - High EA = easy to gain e⁻

Electronegativity (EN) - the ability to attract electrons in a covalent bond
 - Closer to Fluorine, more EN.
 - EN increases as you go upper right diagonally
○ FONC BrICS PH
 Most EN Less En
○ Noble gases aren't included: they are stable with REALLY high IE, low EA
| 3 | 1 | Trigonal planar | Bent | \[
\begin{array}{c}
\text{S} \\
\text{O} \\
\text{O} \\
\end{array}
\] | <120 |
| 4 | 0 | Tetrahedral | Tetrahedral | \[
\begin{array}{c}
\text{H} \\
\text{C} \\
\text{H} \\
\end{array}
\] | 109.5 |
| 4 | 1 | Tetrahedral | Trigonal Pyramidal | \[
\begin{array}{c}
\text{C} \\
\text{O} \\
\text{O} \\
\end{array}
\] | <109.5 |
| 4 | 2 | Tetrahedral | Bent | \[
\begin{array}{c}
\text{H} \\
\text{C} \\
\text{H} \\
\end{array}
\] | <109.5 |
| 5 | 0 | Trigonal bipyramidal | Trigonal bipyramidal | \[
\begin{array}{c}
\text{Cl} \\
\text{P} \\
\text{Cl} \\
\text{Cl} \\
\end{array}
\] | 90 Between Axial and equatorial
120 Equatorial |
| 5 | 1 | Trigonal bipyramidal | seesaw | \[
\begin{array}{c}
\text{F} \\
\text{S} \\
\text{F} \\
\end{array}
\] | <90
<120 |
| 5 | 2 | Trigonal bipyramidal | T-shaped | \[
\begin{array}{c}
\text{F} \\
\text{Cl} \\
\text{F} \\
\end{array}
\] | <90 |