• Inotropy / contractility = change in SV at a given EDV. (gives shift in Starlings curve)
 o Happen as result of Ca2+ handling in cell; things that change in heart failure.

After-load affecting Stroke Volume:
• After-load = the force/load against which the heart must contract to eject the stroke volume
 o E.g. arterial blood pressure
 ▪ High ABP gives high afterload; heart having to produce even greater pressure to project blood into aorta
 ▪ High afterload/ aortic pressure makes it more difficult to eject SV e.g. in systemic or pulmonary arterial hypertension.
• Affected by:
 o Peripheral resistance:
 ▪ High PR = higher BP makes it more difficult for blood to be ejected into aorta.
• Pulmonary artery pressure also affects afterload on right side of heart
 o Patient with heart failure & pulmonary oedema; their pulmonary pressure will be higher so pressure for RV (right ventricle) higher.

Summary:
• Increase SV by Starlings law of heart, by changing EDV
 o No change in ESV by increasing EDV just increase in SV
• Also; can change SV by changing contractility so we fill heart to same resting but eject more blood (EDV doesn’t change but ESV goes down)
• In reality; neither of these happen independently
• Regulation of CO
 o $CO = HR \times (EDV - ESV)$
 • EDV intrinsic factors:
 o Pre-load
 o VR/CVP
 o Blood volume
 o Skeletal muscle pump
 o Respiratory pump
 o Venous tone
 o Gravity
 o Atrial contraction
 o HR (>180bpm)
 • ESV extrinsic factors:
 o Contractility / inotropy
 o Sympathetic nerve activity
 o Circulating adrenaline / noradrenaline.