Properties of Quadrilaterals

Put a \checkmark or a \times in each box to indicate whether the quadrilateral named has the property described

	PROPERTY	Parallelogram	Rhombus	Rectangle	Square	Kite	Trapezium
1	Interior angles add up to 360°						
2	All interior angles are right angles						
3	All sides are equal						
4	Both diagonals are equal						
5	The diagonals are perpendicular		ote 3 of		c0	.uK	
6	The diagonals bisect each other		ote	sale			
7	Both diagonals bisect the angles they re- into	m r	b of	82			
8	Only Order on bisects the other	ge .					
9	Both pairs of opposite sides are equal						
10	Both pairs of opposite sides are parallel						
11	Exactly one pair of sides is parallel						
12	Adjacent sides are equal						
13	Each diagonal bisects the area of the quadrilateral						
14	The diagonals bisect each other perpendicularly						
15	Both pairs of opposite angles are equal						
16	Exactly one pair of opposite angles is equal						
17	Exactly one pair of angles is bisected by a diagonal						

WYNBERG BOYS' HIGH SCHOOL **GRADE 10 MATHEMATICS GEOMETRY REVISION: GRADE 8 TERMINOLOGY AND RULES**

Note: This information sheet does not cover congruency and similarity.

SOME IMPORTANT TERMINOLOGY

1. 2.	Supplementary angles Supplement	 <u>two angles</u> which add up to 180° the difference between 180° and a given angle
3. 4.	Complementary angles Complement	- <u>two angles</u> which add up to 90° - the difference between 90° and a given angle
5.	Adjacent angles	- <u>two angles</u> which share a common arm, and have the same vertex

SOME "RULES" OF GEOMETRY

RULE

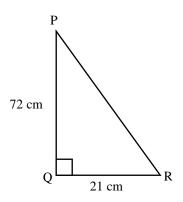
- Angles around a point add up to 360°. 1.
- Angles on a straight line add up to 180°. 2.
- Vertically opposite angles ar fer u 3.
- m Notesa ne 7 of 82 4. When (
 - (a)... pairs of corresponding angles are equal. (Look for an "F" shape.)
 - AND
 - (b)... pairs of alternate angles are equal. (Look for a "Z" or "N" shape.)
 - AND
 - (c)... pairs of co-interior angles are supplementary. (Look for a "C" or "U" shape.)
- 5. Two lines, cut by a transversal, are parallel if...
 - (a)... two corresponding angles are equal.
 - OR
- (b)...two alternate angles are equal.
- OR

(c)...two co-interior angles are supplementary.

Name the line. opp. \angle 's)

ABBREVIATED REASON

Name the p

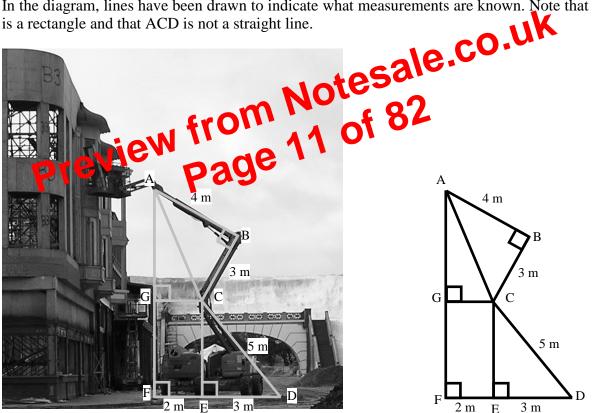

str. line

 $(\angle$'s around point

- (corres. \angle 's; ____) Name the parallel lines.
- (alt∠'s; ___) Name the parallel lines.
- (co-int. \angle 's; ____) Name the parallel lines.
- (corres. \angle 's equal; ____ = ___) Name the equal angles.
- $(alt \angle s equal; =)$ Name the equal angles.
- (co-int. \angle 's suppl.; + =180°) Name the supplementary angles.

- State the theorem of Pythagoras in words. [HINT: In a right-angled triangle ...] (a)
- In \triangle PQR, shown alongside, $\hat{Q} = 90^{\circ}$, (b)

PQ = 72 cm and QR = 21 cm.



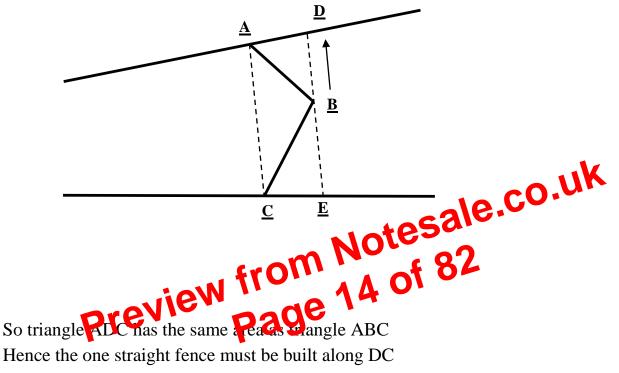
- (1) Determine the length of PR.
- (2)Determine the perimeter of the triangle.

QUESTION 3

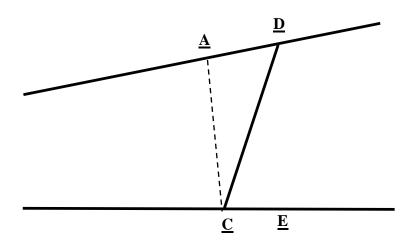
The diagram below shows a film set being constructed. To reach and work on high spots on the construction site, the set-builders used a variety of cherry-picker type cranes, such as the one in the picture.

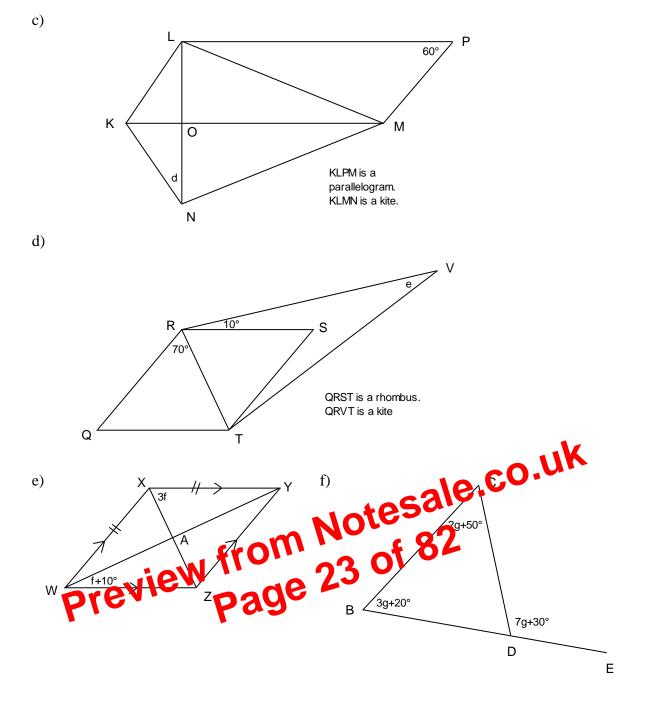
(a) In the diagram, lines have been drawn to indicate what measurements are known. Note that CGFE is a rectangle and that ACD is not a straight line.

Using your knowledge of the theorem of Pythagoras, calculate the height (AF) at which a person would be working when standing on the platform of the crane. Show all necessary working and give your final answer rounded off correctly to one decimal place.

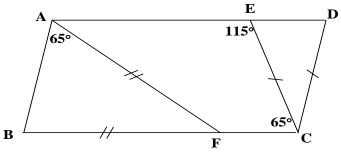

Fair Fence - SOLUTION

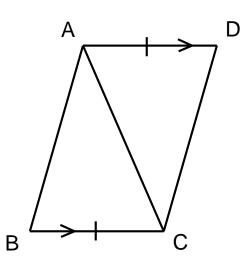
Join AC to form a triangle


Draw DE parallel to AC through B

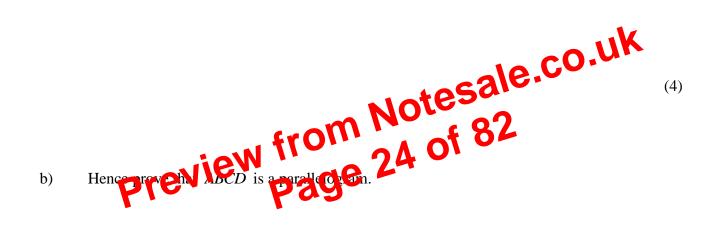

You now have a triangle between parallel lines and its area remains the same as long as its base remains the same.

Drag B to D as shown.

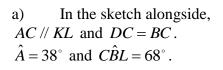

Hence the one straight fence must be built along DC

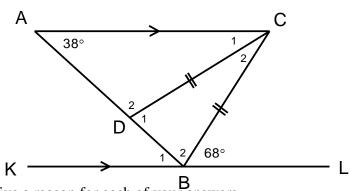


8. In the figure, *AED* and *BFC* are straight lines.


Prove that *ABCD* is a parallelogram.

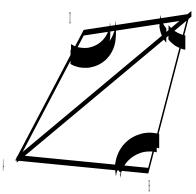
In the following diagram, AD = BC and AD // BC.




a) Prove that $\triangle ABC \equiv \triangle CDA$.

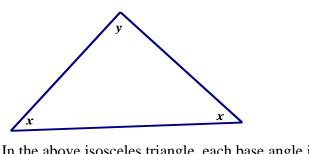
QUESTION 2

Determine each of the following angles. Give a reason for each of your answers.


1) \hat{B}_{1}

(1)

For quadrilateral ABCD it is given that $\hat{B} = \hat{D}$ 1.2 and that AC bisects \hat{BCD}


What kind of quadrilateral is ABCD?(1)

[3]

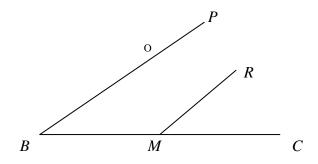
Y

R

In the above isosceles triangle, each base angle is x° and the apex angle is y° CO. UK If the apex angle is 15° larger than the base angles, find the size 5° each angle. [6] 7. In ΔPQR , the probability of 15° and 15° larger than the base angles and the size 5° each angle. [6] XY is paralle to QR, PO = 6 - PY

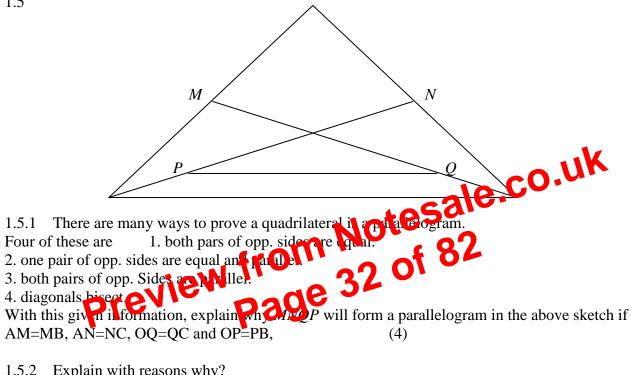
X

Q


a) Calculate: XQ _____ (2)

Note: ΔPQR not drawn to scale

PQ = 6 = PY,

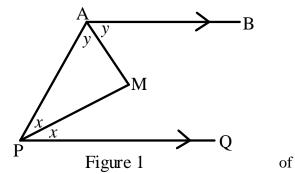

2YR = 6

QR = 2PY

If AR = 8 units, BP // MR, AO = OM and BM = MC , find the length of RC. Give reasons for your statements. [4]

1.5

$$NO = \frac{1}{3}$$
 NB.

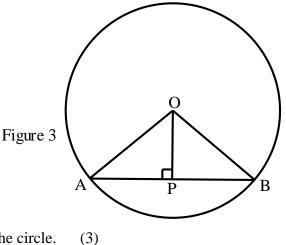

QUESTION 1

1.1 Refer to Figure 1.

AB∥ PQ

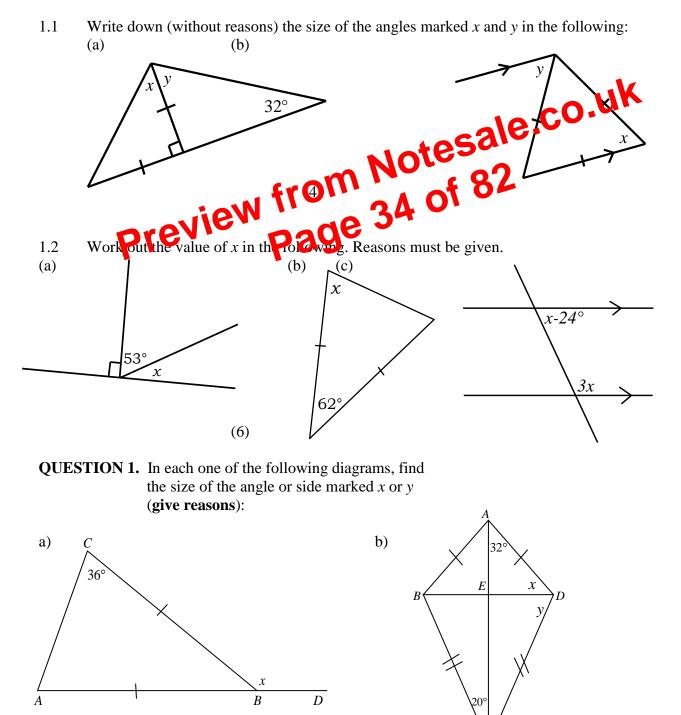
AM bisects \hat{BAP} and PM bisects \hat{APQ}

1.1.1 Write down, with a reason, the numerical value



(2)

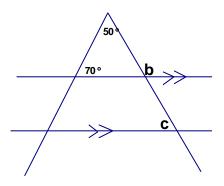
Refer to Figure 3.


The circle with centre O has a chord AB.

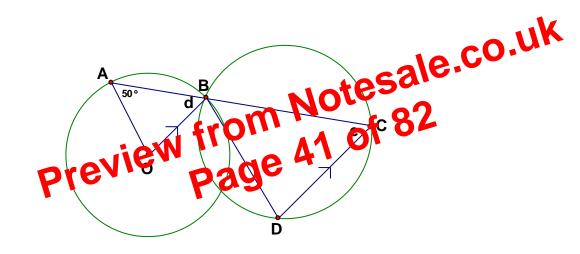
OP is drawn perpendicular to AB.

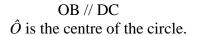
- 2.1 Prove that $\triangle OAP \equiv \triangle OBP$ (4)
- 2.2 If AB = 8 cm and OP = 3 cm, determine the radius of the circle. [7]

<u>QUESTION 1</u>: Geometry

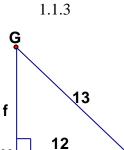


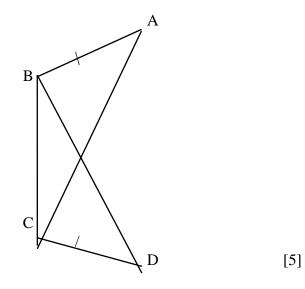
Start question 1 and question 2 on separate exam pad sheets. Question 1

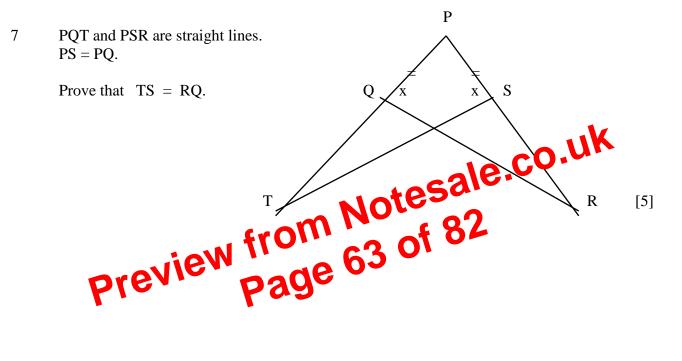

1.3 Find the values of the variables giving reasons:


1.1.1

1.1.2




(4)



H

(3)

6 AB = DC and $\mathcal{G} ABC = \mathcal{G} DCB$. Prove, using congruency, that $\mathcal{P} ABC \ \mathcal{O} \mathcal{P} DBC$ and that $\mathcal{G} A = \mathcal{G} D$.

Preview from Notesale.co.uk page 71 of 82

Based on the information provided, make a conjecture about the quadrilaterals below. Then prove your conjecture.

You must give the best classification possible:

- If a quadrilateral is a rhombus, it is not good enough to classify it as a parallelogram
- If a quadrilateral is a rectangle, it is not good enough to classify the a larabelogram.
- If it is a square it should not be classified as a rectangle **C**

QUESTION 8	[11]
In the diagram below AD=AG and EF DG	
8.1) If $ADG = x$, State (with reasons) three other angles equal to x.	(3)

(2)

[4]