The basic rule for smooth flow is that ‘**Flow is proportional to the pressure drop** \(P_1-P_2 \) **across the vessel**’

Thus for the entire systemic circulation, the Flow, \(F \propto (P_a - P_v) \). Inserting a proportional coefficient we get Darcy's law of flow:

\[
Flow, F = \frac{(P_a - P_v)}{Resistance \ of \ entire \ circulation}
\]

Resistance is defined as the pressure drop needed to drive unit flow. It is equivalent to the Flow/\((P_a-P_v) \)

How big are the vascular pressures?

There is **low pressure in pulmonary circulation** and **high pressure in systemic circulation**.

![Size of the Pressures](image-url)