Endothermic
- Reactions that absorb energy.
- Temperature of the surroundings increases.
- Enthalpy change, ΔH, is positive.
- Enthalpy of the products is higher than the enthalpy of the reactants.

Exothermic
- Reactions that release energy.
- Temperature of the surroundings increases.
- Enthalpy change, ΔH, is negative.
- Enthalpy of the reactants is higher than the enthalpy of the products.

Hess's Law
- Definition: The total enthalpy change is independent of the route by which the chemical reaction takes place as long as the initial and final conditions are the same.
- ΔH_{f}° (products) = ΔH_{f}° (reactants)

Examples
1. Reactants \rightarrow Products
 - ΔH_{f}° elements
 - ΔH_{f}° elements
 - ΔH_{f}° elements
2. Elements \rightarrow Compound Formation
 - ΔH_{f}° elements
 - ΔH_{f}° combustion products
 - ΔH_{f}° elements

Bond Energies
- Bond (dissociation) energy: the specific energy required to break a certain covalent bond.
- Bond breaking: endothermic.
- Bond making: exothermic.
- Units: kJ/mol^{-1}.
- Average bond energy taken due to the same bond having different bond energies in different environments.
 (Ex: OH in ethanol B-H in water)

Standard Enthalpy Change of Reaction, ΔH_{f}°
- Enthalpy change when the amounts of reactants shown in the equation react to give products under standard conditions.
- The reactants & products must be in their standard states.
- Can be exothermic or endothermic.

Standard Enthalpy Change of Formation, ΔH_{f}°
- Enthalpy change when 1 mole of a compound is formed from its elements under standard conditions.
- The reactants & products must be in their standard conditions.
- Can be exothermic or endothermic.

Standard Enthalpy Change of Combustion, ΔH_{f}°
- Enthalpy change when 1 mole of a substance is burnt in excess O_2 under standard conditions.
- The reactants & products must be in their standard states.
- Always exothermic.

Standard Enthalpy Change of Neutralisation, ΔH_{f}°
- Enthalpy change when 1 mole of H_2O is formed by the reaction of an acid with alkali under standard conditions.
- ΔH_{f}° (aq) + OH$^{-}$ (aq) \rightarrow H_2O(c)

Standard Enthalpy Change of Solution, ΔH_{f}°
- Enthalpy change when 1 mole of solute is dissolved in a solvent to form an infinitely dilute solution under standard conditions.
- Infinitely dilute solution - one that doesn't produce any further EC when more solvent is added.

Standard Enthalpy Change of Atomisation, ΔH_{f}°
- Enthalpy change when 1 mole of gaseous atoms is formed from its elements under standard conditions.
- $\frac{1}{2}H_2(g) \rightarrow H(g)$