1. Arithmetic and Geometric Progressions

Preliminaries

Let a_n, d, and S_n be, respectively, the nth term, the common difference and the sum of the first n terms of an arithmetic progression. Then

$$a_n = a_1 + d(n - 1)$$

and

$$S_n = \frac{(a_1 + a_n)n}{2} = \frac{(a_1 + a_n)n}{2}.$$

(1)

(2)

If u_n, q, and S_n are the nth term, the common ratio and the sum of the first n terms of a geometric progression, then

$$u_n = u_1q^{n-1}$$

and

$$S_n = \frac{u_1q^n - u_1}{q-1} = \frac{u_1(q^n - 1)}{q-1}.$$

(3)

(4)

Finally, if S is the sum of an infinite geometric series with $|q| < 1$ then

$$S = \frac{u_1}{1-q}.$$

(5)