Krebs cycle:

1. Oxaloacetate combines with acetyl CoA to form citrate. CoA goes back to the link reaction to be used again.
2. Citrate is decarboxylated. 1 carbon removed to make CO₂.
3. Citrate is dehydrogenated to form a 5 carbon molecule. By removal of NADH that allows NAD to form NADH.
4. Decarboxylation of 5 carbon molecule forms 4 carbon molecule (oxaloacetate). 1 carbon used to make CO₂ ATP formed from ADP and Pi.
5. Regeneration of Oxaloacetate. Decarboxylation of 4C molecule = 2 FADH. Dehydrogenation = 2 NADH.

Products of the Kreb cycle:
- 6 NADH
- 2 FADH
- 2 NAD > 2 NADH
- ADP + Pi > 2 ATP
- CO₂
- 5 Carbon Molecule
- + Acetyl CoA

Oxidative Phosphorylation:

2. Energy lost causes active transport of protons from matrix to intermembrane space.
3. Oxygen acts as a final electron acceptor.
4. Protons diffuse back into matrix via ATP synthase.
5. Movement of protons allows ATP synthase from ADP and Pi.

NAD & FAD:
- Reduced NAD and FAD become oxidised and the hydrogen splits into H⁺ and e⁻.